Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Equipotential shells for efficient inductance extraction
Download
index.pdf
Date
2001-01-01
Author
Beattie, M
Krauter, B
Alatan, Lale
Pileggi, L
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
158
views
0
downloads
Cite This
To make three-dimensional (3-D) on-chip interconnect inductance extraction tractable, it is necessary to ignore parasitic couplings without compromising critical properties of the interconnect system. It is demonstrated that simply discarding faraway mutual inductance couplings can lead to an unstable approximate inductance matrix. In this paper, we describe an equipotential shell methodology, which generates a partial inductance matrix that is sparse yet stable and symmetric. We prove the positive definiteness of the resulting approximate inductance matrix when the equipotential shells are properly defined. Importantly, the equipotential shell approach also provably preserves the inductance of loops if they are enclosed entirely within the shells of their segments. Methods for sizing the shells to control the accuracy are presented. To demonstrate the overall efficacy for on-chip extraction, ellipsoid shells, which are a special case of the general equipotential shell approach, are presented and demonstrated for both on-chip and system-level extraction examples.
Subject Keywords
Modeling
,
Interconnect
,
Circuit
,
Inductance
URI
https://hdl.handle.net/11511/41172
Journal
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
DOI
https://doi.org/10.1109/43.905676
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Equipotential shells for efficient partial inductance extraction
Beattie, M; Alatan, Lale; Pileggi, L (1998-01-01)
The shift-truncate potential method was introduced as an approach to sparsify the partial inductance matrix while maintaining the stability and symmetry. This was accomplished with the use of spherical return shells around point-like current segments. In this paper we propose the use of filament current distributions for the same purpose. Ellipsoidal shells are introduced to model the equipotential surfaces for filament currents. Importantly, we prove that the positive definiteness of the resulting sparse p...
Impedance boundary conditions for time-domain computational aeroacoustics methods
Özyörük, Yusuf (null; 1997-01-01)
A time-domain impedance condition method has been developed for computational aeroacoustics applications. The basis for this method is the standard impedance condition stated in the frequency domain as the particle displacement continuity equation. The development of the time-domain impedance condition follows the relations among the frequency, z-, and discrete-time domains and a rational function representation of the impedance in the z-domain. The resultant impedance condition is finite, infinite-impulse-...
Equipotential projection based MREIT reconstruction without potential measurements
Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is used to produce high resolution images of true conductivitv distribution. Images are reconstructed by utilising measurements of magnetic flux density distribution and surface potentials. Surface potential measurements are needed to reconstruct true conductivity values. In this study, a novel MREIT reconstruction algorithm is developed to generate conductivity images without utilizing the surface potential measurements. The proposed algorithm and ...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
A Thermal Conductance Optimization and Measurement Approach for Uncooled Microbolometers
Senveli, S. Ufuk; Tanrikulu, M. Yusuf; Akın, Tayfun (2011-04-29)
This paper introduces an optimization approach of thermal conductance for single level uncooled microbolometer detectors. An efficient detector design is required due to the limited availability of silicon area per pixel, i.e., the pixel pitch, and due to the capabilities of the fabrication line. The trade-offs between physical parameters are studied to attain the best performance, including the thermal conductance, the thermal time constant, the effective temperature coefficient of resistance (TCR), and th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Beattie, B. Krauter, L. Alatan, and L. Pileggi, “Equipotential shells for efficient inductance extraction,”
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
, pp. 70–79, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41172.