Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Block-Based Spatial Prediction and Transforms Based on 2D Markov Processes for Image and Video Compression
Date
2015-04-01
Author
Kamışlı, Fatih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Conventional intraframe coding is performed in two steps. First, a block of pixels are predicted by copying previously reconstructed neighbor pixels of the block along an angular direction inside the block. Then, the prediction residual block is transform coded with the well-known 2D discrete cosine transform (DCT). Recently, it has been shown that transforming the intraprediction residuals with the odd type-3 discrete sine transform along the prediction direction and the DCT along the perpendicular direction improves the compression performance. More recently, a recursive prediction approach has been proposed to improve intra prediction performance. Both of these recent approaches utilize Markov processes to develop improvements in either the transform or the prediction step but not in both. In this paper, both the intraprediction and the transform steps are obtained based on 2D Markov processes. The derived overall intraframe coding approaches can generalize the mentioned two approaches, provide improved coding gains and produce less blocking effects at low bitrates.
Subject Keywords
Markov processes
,
linear prediction
,
Discrete cosine transforms
,
Image coding
,
Video coding
URI
https://hdl.handle.net/11511/41204
Journal
IEEE TRANSACTIONS ON IMAGE PROCESSING
DOI
https://doi.org/10.1109/tip.2015.2400818
Collections
Department of Electrical and Electronics Engineering, Article