Specific heat and frequency shifts for the translational modes in ammonia solid I close to phase transition

2007-07-01
The specific heat C-p is correlated to the frequency shifts (1/v)(partial derivative v/partial derivative T)(p) in ammonia solid I close to the melting point. Our calculated Raman frequencies for the translational modes of v(T) (100 cm(-1)) and v(T) (130 cm(-1)), are used for this correlation for the pressures of 0, 1.93 and 3.07 kbar in this crystalline system. We obtain that the specific heat varied linearly with the frequency shifts for those pressures studied and values of the slope dP(m)/dT were extracted. The observed behaviour of the ammonia solid I near the melting point is explained on the basis of our spectroscopic modification of the first Pippard relation.
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY

Suggestions

Spectroscopic modification of the Pippard relation applied for the translational mode in ammonia solid II near the melting point
Yurtseven, Hasan Hamit; Yıldız, İlker (Elsevier BV, 2005-09-01)
This study gives our calculation for the frequency shifts 1/V(partial derivative v/partial derivative T)(P) and the specific heat C-p near the melting point in the ammonia solid II. We establish a linear relationship between C-p and 1/v(partial derivative v/partial derivative T)(P) using the Raman frequencies of the translational mode which we calculated in this system. This leads to the validity of the spectroscopic modification of the first Pippard relation in the ammonia solid II near the melting point. ...
Temperature and pressure dependence of the mode Gruneisen parameters close to the melting point in hexagonal ice
Karacali, H.; Yurtseven, Hasan Hamit (Elsevier BV, 2007-02-01)
We reexamine the Pippard relations in this study by relating the specific heat C-P to the Raman frequency shifts 1/v(partial derivative v/partial derivative T)(P) and the thermal expansivity alpha(p) to the 1/v(partial derivative v/partial derivative P)(T), when the mode Gruneisen parameter depends on the temperature and pressure close to the melting point in hexagonal ice. From linear relations between them, the values of the slope dP/dT are deduced in this crystal.
Temperature dependence of the damping constant and the order parameter close to the lambda phase transitions in ammonium halides
Yurtseven, Hasan Hamit (Elsevier BV, 2006-10-01)
This study gives our calculation for the damping constant, using the expressions derived for an Ising pseudospin-phonon coupled system in the ammonium halides (NH4Cl and NH4Br). For this calculation of the damping constant, we use the temperature dependence of the order parameter calculated from the molecular field theory. We predict here the damping constants for the v(5) (174 cm(-1)) and v(5) (177 cm(-1)) Raman modes of NH4Cl and NH4Br, respectively, below T-lambda and compare them with our observed bandw...
Raman frequency shifts of an internal mode near the tricritical and second order phase transitions in NH4Cl
Yurtseven, Hasan Hamit (Elsevier BV, 2005-12-01)
This study gives our analysis for the frequency shifts of the nu(2)(1708 cm(-1)) Raman mode in NH4Cl close to its tricritical (P = 1.6 kbar) and second order (P = 2.8 kbar) phase transitions. From our analysis, we extract the values of the critical exponent which describes the critical behavior of the Raman frequency shifts for this internal mode for the pressure conditions studied in NH4Cl. Our exponent value of alpha approximate to 0.2 for the tricritical phase transition is close to the values of 1/16 (T...
Calculation of the Raman frequencies of the translational mode in ammonia solid II
Yurtseven, Hasan Hamit (Elsevier BV, 2003-03-01)
We report here our calculated Raman frequencies of the translational mode as a function of temperature for the. fixed pressures of 3.65, 5.02 and 6.57 kbars in the ammonia solid II. They were calculated by means of our Gruneisen relation using the volume data from the literature for all the pressures indicated within the temperature regions close to the melting point in this system. Our calculated frequencies are in very-good agreement with those observed experimentally for this translational mode of the am...
Citation Formats
H. H. Yurtseven, “Specific heat and frequency shifts for the translational modes in ammonia solid I close to phase transition,” SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, pp. 1060–1066, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41225.