Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Limits on laser wakefield accelerators
Date
1999-04-01
Author
Yedierler, Burak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
The longitudinal and radial wakefields produced by a single laser pulse in a plasma are calculated. The limits on the laser wakefield acceleration because of diffraction, optical guiding, and energy loss due to radiation are examined. In particular for a bi-Gaussian laser beam, the energy gain about 4.6 GeV/cm s is estimated. A general constraint on the plasma density is presented. All the limits are compared and a localized density channel of width 4.6 x 10(-5) cm is proposed. (C) 1999 American Institute of Physics. [S0034-6748(99)03304-3].
URI
https://hdl.handle.net/11511/41297
Journal
REVIEW OF SCIENTIFIC INSTRUMENTS
DOI
https://doi.org/10.1063/1.1149698
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
EXPLICIT EXPRESSION FOR GROWTH-RATES IN FREE-ELECTRON LASERS WITH HELICAL AND AXIAL MAGNETIC-FIELDS
DEMOKAN, O; KABAK, Y (1992-10-01)
The dispersion relations of transverse and longitudinal modes in a free-electron laser with helical and axial magnetic fields are derived exactly for the one-dimensional case. The modes with positive and negative helicity are distinguished clearly. An analytically solvable expression for the growth rate of the modes, in resonance with the beam, is obtained. The dependence of the growth rate on system parameters is studied for broad ranges of values and comments on optimization are made.
Detection of Far Infrared Radiation using Glow Discharge Detectors GDDs
Küçükkkeskin, Efe; Alasgarzade, Namıg; Uzun Kaymak, İlker Ümit; Altan, Hakan (2015-04-11)
The plasma medium which is created inside the GDD enables us to detect a wide wavelength range of differential or modulated EM signals impinging on them [1-2]. The interaction between the plasma and various frequency EM waves are still being investigated and in the terahertz range the interaction mechanism is still not well understood [1]. To understand the interaction better commercially available GDDs were studied using both time-domain and continuous wave mm wave/THz measureme...
Dispersion of coupled mode-gap cavities
LİAN, Jin; SOKOLOV, Sergei; Yüce, Emre; COMBRİÉ, Sylvain; De Rossi, Alfredo; Mosk, Allard P. (2015-10-01)
The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity mode profile; i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. We formulate a dispersive m...
Wakefield generation in one-dimensional LWFA
Vanchinkhuu, J; Bilikmen, S (2001-06-01)
The generation of wakefields in near-critical density plasma by a short laser pulse is considered. The equations describing the plasma response to the acting laser pulse and the Hamiltonian of an electron in the wakefield are derived by using the Hamilton-Jacobi equation for the cases of nu (g) similar or equal to nu (p) similar or equal to w = c w < c (e is the speed of light). The equations are solved analytically in two cases for a square-shaped laser pulse. The plasma potential inside the laser pulse an...
Radiative gas-dynamic model of a continuous optical discharge in a gravitational field: quasi-optical approximation
Rafatov, İsmail (IOP Publishing, 2009-08-07)
We consider a continuous optical discharge (COD) sustained by a vertically directed weakly focused CO(2) laser beam, in a gravitational field. We used a full two-dimensional radiative gas-dynamic numerical model for the COD, which uses realistic quasi optics and takes refraction of the laser radiation in the plasma properly into account in the description of the laser beam propagation. The model is applied to calculate the parameters of the COD in a converging CO(2) laser beam in free air atmosphere as a fu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yedierler, “Limits on laser wakefield accelerators,”
REVIEW OF SCIENTIFIC INSTRUMENTS
, pp. 1983–1985, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41297.