Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material
Date
2019-10-01
Author
Aydogdu, Ayca
Yıldız, Eda
Aydogdu, Yildirim
Şümnü, Servet Gülüm
Şahin, Serpil
Ayhan, Zehra
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
The objective of this study was to enhance oxidative stability of walnuts present in active packages produced by electrospinning technology. Gallic acid was encapsulated into lentil flour/polyethylene oxide (PEO) nanofibers. To promote the solubility of lentil proteins, pH of solutions was adjusted to pH 1 and pH 10 which were far away from isoelectric point of lentil proteins. While acidic solutions had lower viscosity values than alkaline solutions, their electrical conductivity values were significantly higher. When the scanning electron microscopy (SEM) images were examined, it should be noted that alkaline nanofibers showed homogenous structure. Although gallic acid was not so stable at alkaline conditions, gallic acid loaded nanofibers prepared at alkaline pH still showed antioxidant activity after electrospinning. The physical and thermal properties of encapsulated gallic acid and nanofibers were examined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC) analyses. FTIR results indicated the effect of pH on chemical properties of nanofibers and the interaction between gallic acid and lentil flour-based nanofibers. Gallic acid addition reduced onset temperature and thermal stability. Therefore, it could be taken as evidence of incorporation of gallic acid. Disappearance of enthalpic peak related to melting of crystalline structure of gallic acid in DSC thermal curves confirmed successful encapsulation of gallic acid. Fabricated gallic acid loaded nanofibers were used to pack walnuts and the reduction in oxidation of walnuts with lower peroxide, p-anisidine and Totox values was observed. This would make these packaging materials substantially preferable for packing of foods being highly susceptible to oxidation.
Subject Keywords
Food Science
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/41355
Journal
Food Hydrocolloids
DOI
https://doi.org/10.1016/j.foodhyd.2019.04.020
Collections
Department of Food Engineering, Article