Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Deconvolution and preequalization with best delay LS inverse filters
Date
2004-11-01
Author
Tuncer, Temel Engin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
0
downloads
Cite This
A new method for finding the best delay for the design of least-squares (1,S) inverse filters is introduced. It is shown that there is a considerable difference between the LS errors of a best delay filter and an arbitrary LS inverse filter. Proposed method is an effective and computationally efficient approach for the design of LS optimum filters. Deconvolution problem is considered and the MSE performances of pseudoinverse, preequalization and LS inverse filtering are investigated. In this respect, the theoretical bounds are found for better MSE performance for each method. The sufficient conditions presented in this context are easy to check which gives the flexibility to pick the most suitable method for a deconvolution application. The practical performances of the three approaches are also identified by considering fixed transmit signal power. It is shown that preequalization, LS inverse filtering and pseudoinverse are ordered with respect to their MSE performances from best to worst, respectively, in practical channel and noise conditions.
Subject Keywords
Control and Systems Engineering
,
Signal Processing
,
Electrical and Electronic Engineering
,
Software
,
Computer Vision and Pattern Recognition
URI
https://hdl.handle.net/11511/41382
Journal
SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.sigpro.2004.06.023
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Making linear prediction perform like maximum likelihood in Gaussian autoregressive model parameter estimation
Candan, Çağatay (Elsevier BV, 2020-01-01)
A two-stage method for the parameter estimation of Gaussian autoregressive models is proposed. The proposed first stage is an improved version of the conventional forward-backward prediction method and can be interpreted as its weighted version with the weights derived from the arithmetic mean of the log-likelihood functions for different conditioning cases. The weighted version is observed to perform better than the conventional forward-backward prediction method and other linear prediction based methods (...
Multiple description coding of animated meshes
Bici, M. Oguz; Akar, Gözde (Elsevier BV, 2010-11-01)
In this paper, we propose three novel multiple description coding (MDC) methods for reliable transmission of compressed animated meshes represented by series of 3D static meshes with same connectivity. The proposed methods trade off reconstruction quality for error resilience to provide the best expected reconstruction of 3D mesh sequence at the decoder side. The methods are based on layer duplication and partitioning of the set of vertices of a scalable coded animated mesh by either spatial or temporal sub...
Properties of the momentum LMS algorithm
Tugay, Mehmet Ali; Tanik, Yalçin (Elsevier BV, 1989-10)
One of the most recent modifications on Widrow and Hoff's LMS algorithm has been the inclusion of a momentum term into the weight update equation. The resulting algorithm is referred to as “The Momentum LMS (MLMS) algorithm”. This paper revises the basic properties of the MLMS algorithm for stationary inputs. As a result, new bounds, on the parameters of the algorithm, for convergence are found, and it is shown that, under slow convergence conditions, this new algorithm is equivalent to the usual LMS algori...
Information permeability for stereo matching
Cigla, Cevahir; Alatan, Abdullah Aydın (Elsevier BV, 2013-10-01)
A novel local stereo matching algorithm is introduced to address the fundamental challenge of stereo algorithms, accuracy and computational complexity dilemma. The time consuming intensity dependent aggregation procedure of local methods is improved in terms of both speed and precision. Providing connected 2D support regions, the proposed approach exploits a new paradigm, namely separable successive weighted summation (SWS) among horizontal and vertical directions enabling constant operational complexity. T...
Robust adaptive unscented Kalman filter for attitude estimation of pico satellites
Hacızade, Cengiz; Söken, Halil Ersin (Wiley, 2014-02-01)
Unscented Kalman filter (UKF) is a filtering algorithm that gives sufficiently good estimation results for the estimation problems of nonlinear systems even when high nonlinearity is in question. However, in case of system uncertainty or measurement malfunctions, the UKF becomes inaccurate and diverges by time. This study introduces a fault-tolerant attitude estimation algorithm for pico satellites. The algorithm uses a robust adaptive UKF, which performs correction for the process noise covariance (Q-adapt...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. E. Tuncer, “Deconvolution and preequalization with best delay LS inverse filters,”
SIGNAL PROCESSING
, pp. 2207–2219, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41382.