Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme
Date
2006-06-20
Author
Bozkaya, Canan
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
176
views
0
downloads
Cite This
A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM), is proposed for the solution of unsteady magnetohydro-dynamic (MHD) flow problem in a rectangular duct with insulating walls. The coupled MHD equations in velocity and induced magnetic field are transformed first into the decoupled time-dependent convection-diffusion-type equations. These equations are solved by using DRBEM which treats the time and the space derivatives as nonhomogeneity and then by using DQM for the resulting system of initial value problems. The resulting linear system of equations is overdetermined due to the imposition of both boundary and initial conditions. Employing the least square method to this system the solution is obtained directly at any time level without the need of step-by-step computation with respect to time. Computations have been carried out for moderate values of Hartmann number (M <= 50) at transient and the steady-state levels. As M increases boundary layers are formed for both the velocity and the induced magnetic field and the velocity becomes uniform at the centre of the duct. Also, the higher the value of M is the smaller the value of time for reaching steady-state solution. Copyright (c) 2005 John Wiley & Sons, Ltd.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Applied Mathematics
,
Computational Mechanics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/41509
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
DOI
https://doi.org/10.1002/fld.1131
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
FEM solution of natural convection flow in square enclosures under magnetic field
Turk, O.; Tezer, Münevver (Emerald, 2013-01-01)
Purpose - The purpose of the paper is to obtain finite element method (FEM) solution of steady, laminar, natural convection flow in inclined enclosures in the presence of an oblique magnetic field. The momentum equations include the magnetic effect, and the induced magnetic field due to the motion of the electrically conducting fluid is neglected. Quadratic triangular elements are used to ensure accurate approximation for second order derivatives of stream function appearing in the vorticity equation.
Time-domain BEM solution of convection-diffusion-type MHD equations
Bozkaya, N.; Tezer, Münevver (Wiley, 2008-04-20)
The two-dimensional convection-diffusion-type equations are solved by using the boundary element method (BEM) based on the time-dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady-state it...
MAGNETOHYDRODYNAMIC FLOW IN ELECTRODYNAMICALLY COUPLED RECTANGULAR DUCTS
Tezer, Münevver (Wiley, 1988-06-01)
In Sezgin1,2 the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic field. In the present paper we extend the solution procedure of these papers to two rectangular channels connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to the solution of a pair of dual series equations and then to the solution of a Fredholm's ...
Implementation of physical boundary conditions into computational domain in modelling of oscillatory bottom boundary layers
Tiğrek, Şahnaz; Yılmaz, Bilgi (Wiley, 2010-11-30)
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier-Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (epsilon) has been developed. Control-volume approach is used to discretize the governing equations to facilitate the numeri...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Bozkaya and M. Tezer, “Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
, pp. 567–584, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41509.