Hide/Show Apps

Analysis of variance and linear contrasts in experimental design with generalized secant hyperbolic distribution

Yilmaz, Yidiz E.
Akkaya, Ahmet
We consider one-way classification model in experimental design when the errors have generalized secant hyperbolic distribution. We obtain efficient and robust estimators for block effects by using the modified maximum likelihood estimation (MML) methodology. A test statistic analogous to the normal-theory F statistic is defined to test block effects. We also define a test statistic for testing linear contrasts. It is shown that test statistics based on MML estimators are efficient and robust. The methodology readily extends to unbalanced designs.