Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Clustering of short time-course gene expression data with dissimilar replicates
Date
2018-04-01
Author
Cinar, Ozan
İlk Dağ, Özlem
İyigün, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
Microarrays are used in genetics and medicine to examine large numbers of genes simultaneously through their expression levels under any condition such as a disease of interest. The information from these experiments can be enriched by following the expression levels through time and biological replicates. The purpose of this study is to propose an algorithm which clusters the genes with respect to the similarities between their behaviors through time. The algorithm is also aimed at highlighting the genes which show different behaviors between the replicates and separating the constant genes that keep their baseline expression levels throughout the study. Finally, we aim to feature cluster validation techniques to suggest a sensible number of clusters when it is not known a priori. The illustrations show that the proposed algorithm in this study offers a fast approach to clustering the genes with respect to their behavior similarities, and also separates the constant genes and the genes with dissimilar replicates without any need for pre-processing. Moreover, it is also successful at suggesting the correct number of clusters when that is not known.
Subject Keywords
Microarray gene expression
,
Short time-series
,
Replication
,
Distance
,
Clustering
,
Cluster validation
URI
https://hdl.handle.net/11511/41661
Journal
ANNALS OF OPERATIONS RESEARCH
DOI
https://doi.org/10.1007/s10479-017-2583-3
Collections
Department of Statistics, Article