An experimental study of the FlexRay dynamic segment

It is expected that the time-triggered FlexRay bus will replace the event-triggered Controller Area Network (CAN) for the high-speed in-vehicle communication in future automobiles. To this end, FlexRay provides a static segment for the transmission of periodic messages and a dynamic segment that is suitable for exchanging event-based (sporadic) messages. In this paper, we experimentally evaluate the operation of the FlexRay dynamic segment. In particular, we study how the maximum and average message delays are affected if the length of the dynamic segment, the message payload, the utilization of the dynamic segment and the priority assignment changes. Our experiments are carried out on a FlexRay network with 6 nodes.
IFAC Proceedings Volumes (IFAC-PapersOnline)


Controller area network with offset scheduling: improved offset assignment algorithms and computation of response time distributions
Batur, Ahmet; Schmidt, Klaus Werner; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2018)
The Controller Area Network (CAN) is the most widely-used in-vehicle communication bus in the automotive industry. CAN enables the exchange of data among different electronic control units (ECUs) of a vehicle via messages. The basic requirement for the design of CAN is to guarantee that the worst-case response time (WCRT) of each message is smaller than its specified deadline. Hereby, it is generally desired to achieve small WCRTs that leave sufficient slack to the message deadline. In addition, it has to b...
Software tool development for the automated configuration of flexray networks for in vehicle communication
Öztürk, Can; Schmidt, Şenan Ece; Schmidt, Klaus Werner; Department of Electrical and Electronics Engineering (2013)
The increasing use of electronic components in today’s automobiles demands more powerful in-vehicle network communication protocols. FlexRay protocol, which is expected to be the de-facto standard in the near future, is a deterministic, fault tolerant and fast protocol designed for in vehicle communication. For proper operation of a FlexRay network the communication schedule needs to be computed and the nodes need to be configured before startup. Current software tools that are geared towards FlexRay only d...
Development of strategies for reducing the worst-case message response times on the Controller Area Network
Çelik, Vakkas; Schmidt, Şenan Ece; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2012)
The controller area network (CAN) is the de-facto standard for in-vehicle communication. The growth of time-critical applications in modern cars leads to a considerable increase in the message tra c on CAN. Hence, it is essential to determine e cient message schedules on CAN that guarantee that all communicated messages meet their timing constraints. The aim of this thesis is to develop o set scheduling strategies that find feasible schedules for higher bus load levels compared to conventional CAN scheduling...
Telegram scheduling for the periodic phase of the multifunction vehicle bus
Güldiken, Mustafa Çağlar; Schmidt, Klaus Werner.; Department of Electrical and Electronics Engineering (2020)
Train communication network comprises different standards such as the Wire Train Bus (WTB) for the data exchange among different vehicles and the Multifunction Vehicle Bus (MVB) for the data communication within vehicles. Specifically, MVB is a highly robust real-time field bus specifically designed for control systems built into rail-vehicles. MVB supports both periodic process data and sporadic message data transfers in the form of telegrams. In order to achieve timely and efficient data exchange on MVB, ...
An Experimental Comparison of Messaging Protocols MQTT and COAP
Çoban, Hasan Faruk; Betin Can, Aysu; Department of Information Systems (2017)
As the attention towards to Internet of Things (IoT) increases recently, the need for the infrastructure that carries the communication between nodes, which have limited resources, also increases. The network beneath applications has direct effect on resilience of IoT environments. Due to the advances on mobile devices in terms of more powerful hardware, developers focused on mobile applications. However, solid network structures are needed for these applications. To match these needs several protocols are ...
Citation Formats
K. V. Schmidt, Ş. E. Schmidt, and U. Karakaya, “An experimental study of the FlexRay dynamic segment,” IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 413–418, 2010, Accessed: 00, 2020. [Online]. Available: