An experimental study of the FlexRay dynamic segment

It is expected that the time-triggered FlexRay bus will replace the event-triggered Controller Area Network (CAN) for the high-speed in-vehicle communication in future automobiles. To this end, FlexRay provides a static segment for the transmission of periodic messages and a dynamic segment that is suitable for exchanging event-based (sporadic) messages. In this paper, we experimentally evaluate the operation of the FlexRay dynamic segment. In particular, we study how the maximum and average message delays are affected if the length of the dynamic segment, the message payload, the utilization of the dynamic segment and the priority assignment changes. Our experiments are carried out on a FlexRay network with 6 nodes.
IFAC Proceedings Volumes (IFAC-PapersOnline)


Controller area network with offset scheduling: improved offset assignment algorithms and computation of response time distributions
Batur, Ahmet; Schmidt, Klaus Werner; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2018)
The Controller Area Network (CAN) is the most widely-used in-vehicle communication bus in the automotive industry. CAN enables the exchange of data among different electronic control units (ECUs) of a vehicle via messages. The basic requirement for the design of CAN is to guarantee that the worst-case response time (WCRT) of each message is smaller than its specified deadline. Hereby, it is generally desired to achieve small WCRTs that leave sufficient slack to the message deadline. In addition, it has to b...
Software tool development for the automated configuration of flexray networks for in vehicle communication
Öztürk, Can; Schmidt, Şenan Ece; Schmidt, Klaus Werner; Department of Electrical and Electronics Engineering (2013)
The increasing use of electronic components in today’s automobiles demands more powerful in-vehicle network communication protocols. FlexRay protocol, which is expected to be the de-facto standard in the near future, is a deterministic, fault tolerant and fast protocol designed for in vehicle communication. For proper operation of a FlexRay network the communication schedule needs to be computed and the nodes need to be configured before startup. Current software tools that are geared towards FlexRay only d...
Development of strategies for reducing the worst-case message response times on the Controller Area Network
Çelik, Vakkas; Schmidt, Şenan Ece; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2012)
The controller area network (CAN) is the de-facto standard for in-vehicle communication. The growth of time-critical applications in modern cars leads to a considerable increase in the message tra c on CAN. Hence, it is essential to determine e cient message schedules on CAN that guarantee that all communicated messages meet their timing constraints. The aim of this thesis is to develop o set scheduling strategies that find feasible schedules for higher bus load levels compared to conventional CAN scheduling...
An iterative hub location and routing problem for postal delivery systems
Çetiner, Selim; Sepil, Canan; Süral, Haldun; Department of Industrial Engineering (2003)
In this study, we consider the Turkish postal delivery system and develop an effective solution approach for the combined hub location and routing problem where the location of hub nodes are determined, the nonhub regional postal offices are allocated to the hubs, and the optimal set of routes are determined for each hub. Since the realized post-routing distances between origin-destination pairs are different from those used in the hub-location model, we develop an algorithm that finds the route-compatible ...
Computation of Response Time Distributions for Messages on the Controller Area Network
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-08-23)
The response time of messages is an important parameter for the design of in-vehicle networks based on the controller area network (CAN). The message transmission on CAN is affected by several non-deterministic factors such as stuff bits that are added to CAN frames depending on the message payload or changing phases among the asynchronous CAN nodes because of clock drifts. The resulting probabilistic nature of message response times on CAN is captured by the response time distribution (RTD) that quantifies...
Citation Formats
K. V. Schmidt, Ş. E. Schmidt, and U. Karakaya, “An experimental study of the FlexRay dynamic segment,” IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 413–418, 2010, Accessed: 00, 2020. [Online]. Available: