Conserved charges in extended theories of gravity

Download
2019-11-20
Adami, Hamed
Setare, Mohammad Reza
Sisman, Tahsin Cagri
Tekin, Bayram
We give a detailed review of construction of conserved quantities in extended theories of gravity for asymptotically maximally symmetric spacetimes and carry out explicit computations for various solutions. Our construction is based on the Killing charge method, and a proper discussion of the conserved charges of extended gravity theories with this method requires studying the corresponding charges in Einstein's theory with or without a cosmological constant. Hence we study the ADM charges (in the asymptotically flat case but in generic viable coordinates), the AD charges (in generic Einstein spaces, including the anti-de Sitter spacetimes) and the ADT charges in anti-de Sitter spacetimes. We also discuss the conformal properties and the behavior of these charges under large gauge transformations as well as the linearization instability issue which explains the vanishing charge problem for some particular extended theories. We devote a long discussion to the quasi-local and off-shell generalization of conserved charges in the 2+1 dimensional Chern-Simons like theories and suggest their possible relevance to the entropy of black holes.
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS

Suggestions

Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap
Toffoli, Hande; TANATAR, BİLAL (2014-08-13)
We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchangecorrelation component was found to provide a large contribution to...
Anti-de Sitter-Wave Solutions of Higher Derivative Theories
GÜRSES, METİN; Hervik, Sigbjorn; Sisman, Tahsin Cagri; Tekin, Bayram (American Physical Society (APS), 2013-09-05)
We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors.
Approximate l-state solutions of the D-dimensional Schrodinger equation for Manning-Rosen potential
IKHDAİR, SAMEER; Sever, Ramazan (Wiley, 2008-11-01)
The Schrodinger equation in D-dimensions for the Manning-Rosen potential with the centrifugal term is solved approximately to obtain bound states eigensolutions (eigenvalues and eigenfunctions). The Nikiforov-Uvarov (NU) method is used in the calculations. We present numerical calculations of energy eigenvalues to two- and four-dimensional systems for arbitrary quantum numbers n and 1, with three different values of the potential parameter alpha. It is shown that because of the interdimensional degeneracy o...
Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Farout, Mahmoud; Sever, Ramazan; Ikhdair, Sameer M. (IOP Publishing, 2020-06-01)
We obtain the quantized momentum eigenvalues P-n together with space-like coherent eigenstates for the space-like counterpart of the Schrodinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Bound states of the Dirac equation for the PT-symmetric generalized Hulthen potential by the Nikiforov-Uvarov method
Egrifes, H; Sever, Ramazan (Elsevier BV, 2005-09-05)
The one-dimensional Dirac equation is solved for the PT-symmetric generalized Hulthen potential. The Nikiforov-Uvarov method which is based on solving the second-order linear differential equations by reduction to a generalized equation of hypergeometric type is used to obtain exact energy eigenvalues and corresponding eigenfunctions.
Citation Formats
H. Adami, M. R. Setare, T. C. Sisman, and B. Tekin, “Conserved charges in extended theories of gravity,” PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, pp. 1–85, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42105.