Assembly line balancing with station paralleling

We consider the NP-hard problem of assembly line balancing with station paralleling. We assume an arbitrary number of parallel workstations can be assigned to each stage. Every task requires a specified tooling/equipment, and this tooling/equipment should be available in all parallel workstations of the stage to which the task is assigned. Our objective is to find an assignment of tasks to stages so as to minimize sum of station opening and tooling/equipment costs. We propose two branch and bound algorithms: one for optimal solutions and one for near optimal solutions. We find that optimal solutions can be found quickly for medium sized problem instances; for larger sized problems we find high quality solutions in reasonable solution times.


Workload smoothing in simple assembly line balancing
Azizoğlu, Meral (2018-01-01)
This paper considers a simple assembly line balancing problem with fixed number of workstations and prespecified cycle time. Our objective is to minimize the sum of the squared deviations of the workstation loads around the cycle time, hence maintain workload smoothing. We develop several optimality properties and bounding mechanisms, and use them in our branch and bound algorithm. The results of our computational study reveal that our branch and bound algorithm is capable of solving medium sized problem in...
Rebalancing in assembly lines
Girit, Utku; Azizoğlu, Meral; Department of Industrial Engineering (2019)
Assembly line balancing is an important and well recognized operations research problem. The current balancing might not stay optimal for a long time due to the changing conditions. The changing conditions, like disruptions in one or more workstations, may cause some inefficiencies, even infeasibilities, for the current balance. In this study, after the disruption, we aim to rebalance the assembly line by considering the trade-off between workload balancing (efficiency measure) and total displacement amount...
Assembly Line Balancing with Task Paralleling
Kaplan, Özlem; Özdemirel, Nur Evin; Department of Industrial Engineering (2004)
In this study, we consider single model deterministic Assembly Line Balancing problem with task paralleling. The objective is to minimize the total cost which is composed of station opening cost and task dependent equipment cost. A branch and bound algorithm that allows two-level task paralleling is proposed. A heuristic algorithm is also developed both for obtaining efficient upper bounds to branch and bound and for achieving good approximate solutions for large sized problems. Computational experiments ar...
Disassembly line balancing with limited supply and subassembly availability
Altekin, FT; Kandiller, L; Özdemirel, Nur Evin (2003-10-30)
Disassembly line balancing problem (DLBP) aims at finding a feasible assignment of disassembly tasks to workstations such that precedence relations among tasks are satisfied and some measure of effectiveness is optimized. We consider partial disassembly under limited supply of a single product as well as availability of its subassemblies. Hence, in satisfying the demand for revenue generating parts, both discarded products and available subassemblies can be utilized. We assume that part revenues and demand,...
Docking problems of sea surface vehicles
Yılmaz, İsmail Çağdaş; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2019)
This thesis covers parallel docking (parallel parking) problem for unmanned surface vehicles (USVs). First, a mathematical model for a USV with two propellers is constructed by using Newton-Euler formulation. Kinematics and dynamic equations create 6 degrees-of-freedom model. A hierarchical motion control approach is implemented on this model. Two kinds of guidance laws, line-of-sight (LOS), and pure pursuit (PP) are employed for way-point travelling at the strategic level of the hierarchy. At the control a...
Citation Formats
Y. Ege, M. Azizoğlu, and N. E. Özdemirel, “Assembly line balancing with station paralleling,” COMPUTERS & INDUSTRIAL ENGINEERING, pp. 1218–1225, 2009, Accessed: 00, 2020. [Online]. Available: