Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bernstein approximations in glasso-based estimation of biological networks
Date
2017-03-01
Author
Purutçuoğlu Gazi, Vilda
Wit, Ernst
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
The Gaussian graphical model (GGM) is one of the common dynamic modelling approaches in the construction of gene networks. In inference of this modelling the interaction between genes can be detected mainly via graphical lasso (glasso) or coordinate descent-based approaches. Although these methods are successful in moderate networks, their performances in accuracy decrease when the system becomes sparser. We here implement a particular type of polynomial transformations, called the Bernstein polynomials, of the network data in advance of their inference to raise the accuracy. From comparative Monte Carlo studies and real data analyses we show that these polynomials are successful in terms of the precision, specificity and F-measure when the scale-free networks are modelled via GGM and estimated by glasso, and accordingly they can be used as a preprocessing step in inference of these networks. (C) 2017 Statistical Society of Canada
Subject Keywords
Bernstein Polynomials
,
F-measure
,
Graphical Lasso
,
Graphical Methods
,
Monte Carlo Runs
,
Precision
,
Specificity
URI
https://hdl.handle.net/11511/42209
Journal
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
DOI
https://doi.org/10.1002/cjs.11309
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Loop-based conic multivariate adaptive regression splines is a novel method for advanced construction of complex biological networks
Ayyıldız Demirci, Ezgi; Purutçuoğlu Gazi, Vilda; Weber, Gerhard Wilhelm (2018-11-01)
The Gaussian Graphical Model (GGM) and its Bayesian alternative, called, the Gaussian copula graphical model (GCGM) are two widely used approaches to construct the undirected networks of biological systems. They define the interactions between species by using the conditional dependencies of the multivariate normality assumption. However, when the system's dimension is high, the performance of the model becomes computationally demanding, and, particularly, the accuracy of GGM decreases when the observations...
Novel model selection criteria on high dimensionalbiological networks
Bülbül, Gül Baha; Purutçuoğlu Gazi, Vilda; Department of Statistics (2019)
Gaussian graphical model (GGM) is an useful tool to describe the undirected associ-ations among the genes in the sparse biological network. To infer such high dimen-sional biological networks, thel1-penalized maximum-likelihood estimation methodis used. This approach performs a variable selection procedure by using a regular-ization parameter which controls the sparsity in the network. Thus, a selection ofthe regularization parameter becomes crucial to define the true interactions in the bi-ological ne...
Semi-Bayesian Inference of Time Series Chain Graphical Models in Biological Networks
Farnoudkia, Hajar; Purutçuoğlu Gazi, Vilda (null; 2018-09-20)
The construction of biological networks via time-course datasets can be performed both deterministic models such as ordinary differential equations and stochastic models such as diffusion approximation. Between these two branches, the former has wider application since more data can be available. In this study, we particularly deal with the probabilistic approaches for the steady-state or deterministic description of the biological systems when the systems are observed though time. Hence, we consider time s...
Vine copula graphical models in the construction of biological networks
Farnoudkia, Hajar; Purutçuoğlu Gazi, Vilda (2021-01-01)
The copula Gaussian graphical model (CGGM) is one of the major mathematical models for high dimensional biological networks which provides a graphical representation, espe-cially, for sparse networks. Basically, this model uses a regression of the Gaussian graphical model (GGM) whose precision matrix describes the conditional dependence between the variables to estimate the coefficients of the linear regression model. The Bayesian inference for the model parameters is used to overcome the dimensional limita...
Novel model selection criteria for LMARS: MARS designed for biological networks
Bulbul, Gul Bahar; Purutçuoğlu Gazi, Vilda (2021-03-01)
In higher dimensions, the loop-based multivariate adaptive regression splines (LMARS) model is used to build sparse and complex gene structure nonparametrically by correctly defining its interactions in the network. Also, it prefers to apply the generalized cross-validation (GCV) value as its original model selection criterion in order to select the best model, in turn, represent the true network structure. In this study, we suggest to modify the model selection procedure of LMARS by changing GCV with our K...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Purutçuoğlu Gazi and E. Wit, “Bernstein approximations in glasso-based estimation of biological networks,”
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
, pp. 62–76, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42209.