Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performing The First Single Event Effect Tests using The METU Defocusing Beamline Project
Date
2018-12-27
Author
Demirköz, Melahat Bilge
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
182
views
0
downloads
Cite This
METU-Defocusing Beam Line (METU-DBL) project aims to perform Single Event Effect (SEE) tests for space, nuclear and other applications. Turkish Atomic Energy Authority (TAEA) has a cyclotron which can accelerate protons up to 30 MeV kinetic energy at the Proton Accelerator Facility (PAF) mainly for radioisotope production and for research and development (R&D) purposes. In the facility, the stable proton beam current is variable between 0.1 µA to 1.2 mA and the beam size is nearly 1 cm x 1 cm. METU-DBL pre-test setup, which has been installed in the R&D room, enlarges the beam size with two quadrupole magnets and it reduces the proton flux with a collimator. The pretest setup beam size is about 10 cm x 10 cm and the beam flux is 108 p/cm2/s. The first tests of electronic cards, detectors and also commercial and experimental solar cells have been performed using this setup. Also, the final configuration of METU-DBL is now under construction to provide a beam according to ESA ESCC No. 25100 standard. MCNP Monte Carlo codes were used for the calculations of secondary particles (neutrons, gammas) and residuals.
Subject Keywords
Irradiation facility
,
Beam line design
,
Radiation simulation
,
MCNP
,
Monte Carlo
URI
https://hdl.handle.net/11511/42276
DOI
https://doi.org/10.21175/radj.2018.02.021
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
METU-Defocusing beam line project and beam optics studies
Demirköz, Melahat Bilge (2017-07-31)
METU-Defocusing Beam Line (METU-DBL) project aims to perform Single Event Effect (SEE) tests for space, nuclear and medical applications. Turkish Atomic Energy Authority (TAEA) has a 30MeV proton cyclotron at Proton Accelerator Facility (PAF) mainly for radioisotope production and an R&D room for other applications. The proton beam current is variable between 0.1µA to 1.2mA and the beam size is small. METU-DBL, which is being installed in the R&D room, will enlarge the beam size with three quadrupole magnet...
An Adaptive Hybrid Beamforming Scheme for Time-Varying Wideband Massive MIMO Channels
Kurt, Anıl; Güvensen, Gökhan Muzaffer (2020-06-01)
© 2020 IEEE.In this paper, adaptive hybrid beamforming methods are proposed for millimeter-wave range massive MIMO systems considering single carrier wideband transmission in uplink data mode. A statistical analog beamformer is adaptively constructed in slow-time, while the channel is time-varying and erroneously estimated. Proposed recursive filtering approach is shown to bring a remarkable robustness against estimation errors. Then, analytical modifications are applied on an analog beamformer design metho...
A Low Complexity Two-Stage Target Detection Scheme for Resource Limited Radar Systems
Candan, Çağatay (2013-01-01)
A two-stage detector is proposed to accommodate high computational load requirements of modern radar systems. The first stage of the proposed system is a low-complexity detector that operates at an unusually high false alarm probability value around 1/10. This stage is to prescreen and eliminate some of the test cells with relatively few operations. The second stage operates only on the cells passing the prescreening stage and implements a high-complexity detector at a desired system false alarm rate. Due t...
The ATLAS Simulation Infrastructure
Aad, G.; et. al. (2010-12-01)
The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector descriptio...
Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
Ahdida, C.; et. al. (2019-11-01)
This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. B. Demirköz, “Performing The First Single Event Effect Tests using The METU Defocusing Beamline Project,” 2018, vol. 3, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42276.