Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mean ergodicity of positive operators in KB-space
Date
2006-11-01
Author
Alpay, S.
Binhadjah, A.
Emelyanov, Eduard
Ercan, Z.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
218
views
0
downloads
Cite This
We prove that any positive power bounded operator T in a KB-space E which satisfies
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/42289
Journal
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
DOI
https://doi.org/10.1016/j.jmaa.2005.10.054
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Finite type points on subsets of C-n
Yazıcı, Özcan (Elsevier BV, 2020-07-01)
In [4], D'Angelo introduced the notion of points of finite type for a real hypersurface M subset of C-n and showed that the set of points of finite type in M is open. Later, Lamel-Mir [8] considered a natural extension of D'Angelo's definition for an arbitrary set M subset of C-n. Building on D'Angelo's work, we prove the openness of the set of points of finite type for any subset M subset of C-n.
Stability of differential equations with piecewise constant arguments of generalized type
Akhmet, Marat (Elsevier BV, 2008-02-15)
In this paper we continue to consider differential equations with piecewise constant argument of generalized type (EPCAG) [M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal. TMA 66 (2007) 367-383]. A deviating function of a new form is introduced. The linear and quasilinear systems are under discussion. The structure of the sets of solutions is specified. Necessary and Sufficient conditions for stability of the zero Solution are ob...
Integral manifolds of differential equations with piecewise constant argument of generalized type
Akhmet, Marat (Elsevier BV, 2007-01-15)
In this paper we introduce a general type of differential equations with piecewise constant argument (EPCAG). The existence of global integral manifolds of the quasilinear EPCAG is established when the associated linear homogeneous system has an exponential dichotomy. The smoothness of the manifolds is investigated. The existence of bounded and periodic solutions is considered. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Ap...
Global existence and boundedness for a class of second-order nonlinear differential equations
Tiryaki, Aydin; Zafer, Ağacık (Elsevier BV, 2013-09-01)
In this paper we obtain new conditions for the global existence and boundedness of solutions for nonlinear second-order equations of the form
Picone's formula for linear non-selfadjoint impulsive differential equations
Ozbekler, A.; Zafer, Ağacık (Elsevier BV, 2006-07-15)
In this paper, we derive a Picone type formula for second-order linear non-selfadjoint impulsive differential equations having fixed moments of impulse actions, and obtain a Wirtinger type inequality, a Leighton type comparison theorem, and a Sturm-Picone comparison theorem for such equations. Moreover, several oscillation criteria are also derived as applications. (c) 2005 Elsevier Inc. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alpay, A. Binhadjah, E. Emelyanov, and Z. Ercan, “Mean ergodicity of positive operators in KB-space,”
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, pp. 371–378, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42289.