Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Time-dependent green Weber problem
Date
2017-12-01
Author
Khoei, Arsham Atashi
Süral, Haldun
Tural, Mustafa Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
118
views
0
downloads
Cite This
We consider an extension of the classical Weber problem, named as the green Weber problem (GWP), in which the customers have one-sided time windows. The GWP decides on the location of the single facility in the plane and the speeds of the vehicles serving the customers from the facility within the one-sided time windows so as to minimize the total amount of carbon dioxide emitted in the whole distribution system. We also introduce time-dependent congestion which limits the vehicle speeds in different time periods and call the resulting problem as the time-dependent green Weber problem (TD-GWP). In the TD-GWP, the vehicles are allowed to wait during more congested time periods. We formulate the GWP and TD-GWP as second order cone programming problems both of which can be efficiently solved to optimality. We show that if the traffic congestion is non-increasing, then there exists an optimal solution in which the vehicles do not wait at all. Computational results are provided comparing the locations of the facility and the resulting carbon dioxide emissions of the classical Weber problem with those of the GWP and comparing the GWP with the TD-GWP in terms of carbon dioxide emissions in different traffic congestion patterns.
Subject Keywords
Weber Problem
,
Carbon Dioxide Emission
,
Facility Location
,
Green Facility Location
,
Time-Dependent Congestion
,
Second Order Cone Programming
URI
https://hdl.handle.net/11511/42378
Journal
COMPUTERS & OPERATIONS RESEARCH
DOI
https://doi.org/10.1016/j.cor.2017.04.010
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
The Weber problem in congested regions with entry and exit points
Farham, Mohammad Saleh; Süral, Haldun; İyigün, Cem (2015-10-01)
The Weber problem is about finding a facility location on a plane such that the total weighted distance to a set of given demand points is minimized. The facility location and access routes to the facility can be restricted if the Weber problem contains congested regions, some arbitrary shaped polygonal areas on the plane, where location of a facility is forbidden and traveling is allowed at an additional fixed cost. Traveling through congested regions may also be limited to certain entry and exit points (o...
Multi-facility Green Weber Problem
Atashıkhoeı, Arsham; Süral, Haldun; Tural, Mustafa Kemal (null; 2018-07-06)
Multi-facility Green Weber ProblemThe multi-facility Weber problem corresponds to locating a number of facilities on the plane so as to minimize the sum of the weighted Euclidean distances between the customers and the allocated facilities. Its applications can be exemplified by locating warehouses or facilities for a distribution system in which the demands will be delivered directly to the customers. Such distribution systems consume a large amount of fuel and increase the emissions of greenhouse gases.In...
Experimental comparison of different minichannel geometries for use in evaporators
Ağartan, Yiğit Ata; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2012)
This thesis investigates the refrigerant (R-134a) flow in three minichannels having different geometries experimentally. During the last 40 years heat transfer in small scales has been a very attractive research area. Improvements in heat transfer in the refrigeration applications by means of usage of micro/minichannels provide significant developments in this area. Also it is known that experimental studies are very important to constitute a database which is beneficial for new developments and research. D...
BEM SOLUTIONS OF MAGNETOHYDRODYNAMIC FLOW EQUATIONS UNDER THE TIME AND AXIAL-DEPENDENT MAGNETIC FIELD
Ebren Kaya, Elif; Tezer, Münevver; Department of Mathematics (2021-9-6)
In the thesis, four different MHD duct flow problems are solved by using the Dual Reciprocity Boundary Element Method (DRBEM) with the suitable boundary conditions according to the physics of the problem. The two-dimensional, steady or unsteady, fully-developed MHD flow of a viscous, incompressible and electrically conducting fluid is considered in a long pipe of rectangular cross-section (duct) under the effect of an externally applied magnetic field which is either uniform or time-dependent or axially ch...
Soot formation in industrial burners
Hırtıslı, İlkem; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2019)
This thesis examines the problem of soot (also known as coke) formation in industrial burners by thermal methods and morphological characterization. The fuel gas soot (FG) was collected during maintenance stop(s) of a burner in which refinery fuel gas (RFG) is burned. The obtained sample is crushed in a mortar and sieved to 75-106 μm, to minimize particle diameter effects. Thermogravimetric analysis (TGA) is used to determine the combustion characteristic temperatures of the sample. In the TGA experiments w...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. A. Khoei, H. Süral, and M. K. Tural, “Time-dependent green Weber problem,”
COMPUTERS & OPERATIONS RESEARCH
, pp. 316–323, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42378.