Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
AN OPTIMAL-CONTROL PROBLEM WITH NONLINEAR ELLIPTIC STATE-EQUATIONS
Date
1992-02-01
Author
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
In this article some of the results for optimal control of linear systems have been generalized to a nonlinear case. This is achieved by employing standard techniques of the nonlinear theory. After demonstrating the existence of optimal controls, finite element method is used to discretize the problem. The resulting finite dimensional problem is solved by a special algorithm. The theoretical discussions are completed by proving that approximate solutions are reduced to exact solutions as the element size tends to zero. This study is closed by a presentation and a discussion of several related numerical results.
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/42406
Journal
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
DOI
https://doi.org/10.1016/0022-247x(92)90152-4
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
On the smoothness of solutions of impulsive autonomous systems
Akhmet, Marat (Elsevier BV, 2005-01-01)
The aim of this paper is to investigate dependence of solutions on parameters for nonlinear autonomous impulsive differential equations. We will specify what continuous, differentiable and analytic dependence of solutions on parameters is, define higher order derivatives of solutions with respect to parameters and determine conditions for existence of such derivatives. The theorem of analytic dependence of solutions on parameters is proved.
On Stability of Linear Delay Differential Equations under Perron's Condition
Diblík, J.; Zafer, A. (Hindawi Limited, 2011)
The stability of the zero solution of a system of first-order linear functional differential equations with nonconstant delay is considered. Sufficient conditions for stability, uniform stability, asymptotic stability, and uniform asymptotic stability are established.
Matrix measure approach to Lyapunov-type inequalities for linear Hamiltonian systems with impulse effect
Kayar, Zeynep; Zafer, Ağacık (Elsevier BV, 2016-08-01)
We present new Lyapunov-type inequalities for Hamiltonian systems, consisting of 2n-first-order linear impulsive differential equations, by making use of matrix measure approach. The matrix measure estimates of fundamental matrices of linear impulsive systems are crucial in obtaining sharp inequalities. To illustrate usefulness of the inequalities we have derived new disconjugacy criteria for Hamiltonian systems under impulse effect and obtained new lower bound estimates for eigenvalues of impulsive eigenva...
VARIATION OF LYAPUNOV METHOD FOR DYNAMIC-SYSTEMS ON TIME SCALES
KAYMAKCALAN, B; RANGARAJAN, L (Elsevier BV, 1994-07-15)
A new comparison theorem that connects the solutions of perturbed and unperturbed dynamic systems in a manner useful to the theory of perturbations is given and this comparison theorem is employed as a stability criterion to compare the asymptotic behaviors of perturbed and unperturbed systems. It is further shown by means of both theory and numerical computation that time scales do offer a unification in order to emphasize the better asymptotic behavior of perturbed systems in both continuous and discrete ...
Stability of differential equations with piecewise constant arguments of generalized type
Akhmet, Marat (Elsevier BV, 2008-02-15)
In this paper we continue to consider differential equations with piecewise constant argument of generalized type (EPCAG) [M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal. TMA 66 (2007) 367-383]. A deviating function of a new form is introduced. The linear and quasilinear systems are under discussion. The structure of the sets of solutions is specified. Necessary and Sufficient conditions for stability of the zero Solution are ob...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. K. Leblebicioğlu, “AN OPTIMAL-CONTROL PROBLEM WITH NONLINEAR ELLIPTIC STATE-EQUATIONS,”
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, pp. 178–205, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42406.