Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations

Download
2007-04-01
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can be mitigated by using the LL functions for discretization. This is achieved without increasing the computational requirements and with only minor modifications in the existing codes based on the RWG functions.
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

Suggestions

On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Rigorous Solutions of Electromagnetic Problems Involving Hundreds of Millions of Unknowns
Ergül, Özgür Salih (2011-02-01)
Accurate simulations of real-life electromagnetic problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be easily achieved, even when using the most powerful computers with state-of-the-art technology. Hence, many electromagnetic problems in the literature have been solved by resorting to various approximation techniques, without controllable error. In this paper, we present full-wave solutions of sc...
MFIE-Based Formulation Using Double-Layer Modeling for Perfectly Conducting Objects
Guler, Sadri; İbili, Hande; Ergül, Özgür Salih (2019-01-01)
We present resonance-free solutions of scattering problems involving closed conductors using the magnetic field integral equation (MFIE). In the literature, MFIE is often combined with the electric-field integral equation (EFIE) to avoid internal resonances that can significantly contaminate solutions especially when scatterers become electrically large. The resulting combined-field integral equation (CFIE), however, possesses the disadvantages of EFIE, e.g., ill-conditioning for dense discretizations. We s...
Hybrid Surface Integral Equations for Optimal Analysis of Perfectly Conducting Bodies
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-07-24)
We consider hybrid formulations involving simultaneous applications of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the combined-field integral equation (CFIE) for the electromagnetic analysis of three-dimensional conductors with arbitrary geometries. By selecting EFIE, MFIE, and CFIE regions on a given object, and optimizing these regions in accordance with the simulation requirements, one can construct an optimal hybrid-field integral equation (HFIE) that p...
Accurate Solutions of Extremely Large Integral-Equation Problems in Computational Electromagnetics
Ergül, Özgür Salih (2013-02-01)
Accurate simulations of real-life electromagnetics problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be achieved easily, even when using the most powerful computers with state-of-the-art technology. However, with the multilevel fast multipole algorithm (MLFMA) and parallel MLFMA, we have been able to obtain full-wave solutions of scattering problems discretized with hundreds of millions of unknow...
Citation Formats
Ö. S. Ergül, “Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, pp. 1103–1110, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42649.