Correlation between the viscoelastic properties and cracking potential of engineered cementitious composites

2014-11-30
KESKİN, SÜLEYMAN BAHADIR
ŞAHMARAN, MUSTAFA
Yaman, İsmail Özgür
Lachemi, Mohamed
Although Engineered Cementitious Composites (ECC) offer a number of advantages over ordinary and fiber reinforced concrete in many respects, it is not cost-effective to build a whole structure with ECC, currently. Thus, ECC can potentially be used in repair systems or in bi-material systems which require it to be used together with a dimensionally stable material. High shrinkage, together with the restraining effect brings about cracking a critical phenomenon for ECC. In this study, along with the mechanical properties of ECC, viscoelastic properties like autogenous shrinkage, drying shrinkage and tensile creep which were used to calculate ECC's cracking potential were studied. At the same time, the tendency of ECC mixtures to crack under restrained shrinkage conditions was also investigated using restrained shrinkage rings. It was concluded that creep, elastic properties, and shrinkage data should be together used to evaluate the dimensional compatibility.
CONSTRUCTION AND BUILDING MATERIALS

Suggestions

Strength of carbon fiber reinforced polymers bonded to concrete and masonry
Serdar Camli, Umit; Binici, Barış (Elsevier BV, 2007-07-01)
Fiber reinforced polymers (FRPs) have gained popularity in upgrades of reinforced concrete structural elements within the last decade because of their ease of application and high strength-to-weight ratio. In the design of an effective retrofitting solution using FRP systems, the anchorage capacity has an important role. This study presents the results of 57 double shear push-out tests conducted to determine the strength of carbon fiber reinforced polymers (CFRPs) bonded to concrete prisms and hollow clay t...
Anchorage strength of fiber reinforced polymers
Çamlı, Ümit Serdar; Binici, Barış; Department of Civil Engineering (2005)
Fiber reinforced polymers (FRPs) have gained popularity in upgrade projects for reinforced concrete structural elements within the last decade because of its ease of application and high strength-to-weight ratio. In the design of an effective retrofitting solution by means of an FRP system, the anchorage capacity has an important role. This study presents the results of an experimental program conducted to determine the strength of carbon fiber reinforced polymers (CFRPs) bonded to concrete prisms or hollow...
Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly(methyl methacrylate) syntactic foams
ÖZKUTLU DEMİREL, MERVE; Dilek Hacıhabiboğlu, Çerağ; Bayram, Göknur (Elsevier BV, 2018-10-15)
Syntactic foams offer low density polymers for insulation and transportation applications with the advantage of having high mechanical properties. In this study, poly(methyl methacrylate) (PMMA) syntactic foams were produced with three different types of hollow glass microspheres (HGMs) as low, medium and high density. It was observed that the density of the syntactic foams was in inverse ratio to the strength properties of the syntactic foams. The lowest measured syntactic foam density was obtained with th...
Relationship between resilient modulus and soil index properties of unbound materials
Çöleri, Erdem; Güler, Murat; Department of Civil Engineering (2007)
In the mechanistic design approach, which has already been started to utilize in several countries, the variations in material properties are better taken into account based on fundemental engineering principles. Resilient modulus is the most important material property that is used in the mechanistic design since it describes the true martial performance of unbound pavement layers under traffic loading. In this thesis, the objective is to determine the resilient modulus, used in the mechanistic design of p...
Analysis of earthquake loading, wind loading and ice loading effects on guyed masts
Yapar, Özgür; Yılmaz, Çetin; Department of Civil Engineering (2010)
Guyed masts are special type of structures that are widely used in the telecommunication industry. In the past, there was no guideline for seismic design of these types of structures in the corresponding design codes. On the other hand, in the latest “G” revision of the ANSI/TIA-EIA code there is a comprehensive design criterion for the seismic design of the guyed masts. However, during the design process of these structures the most common approach is to ignore the effect of seismic loading and use only th...
Citation Formats
S. B. KESKİN, M. ŞAHMARAN, İ. Ö. Yaman, and M. Lachemi, “Correlation between the viscoelastic properties and cracking potential of engineered cementitious composites,” CONSTRUCTION AND BUILDING MATERIALS, pp. 375–383, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42799.