Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of earthquake loading, wind loading and ice loading effects on guyed masts
Download
index.pdf
Date
2010
Author
Yapar, Özgür
Metadata
Show full item record
Item Usage Stats
161
views
342
downloads
Cite This
Guyed masts are special type of structures that are widely used in the telecommunication industry. In the past, there was no guideline for seismic design of these types of structures in the corresponding design codes. On the other hand, in the latest “G” revision of the ANSI/TIA-EIA code there is a comprehensive design criterion for the seismic design of the guyed masts. However, during the design process of these structures the most common approach is to ignore the effect of seismic loading and use only the internal forces developed from the wind load and ice load analysis. In this study firstly the efficiency and accuracy of the commercial SAP2000 and PLS-TOWER software were investigated, then finite element models of three guyed masts that had been designed in Turkey with the heights 30m, 60m and 100m in the SAP2000 and PLS-TOWER software were analyzed under the effect of earthquake, wind and ice loadings. The most common design code recognized all over the world used for the design of the guyed masts is ANSI/TIA-EIA 222-G “Structural Standards for Steel Antenna Towers and Supporting Structures”. Thus, the corresponding sections of this code were followed during the study. The main objective of this research is to check the correctness of commercial SAP2000 and PLS-TOWER software and to investigate the effect of seismic actions on the guyed masts and also to gain a better understanding of the behavior of guyed masts under the effects of the wind, ice and earthquake loadings.
Subject Keywords
Civil engineering.
URI
http://etd.lib.metu.edu.tr/upload/2/12612137/index.pdf
https://hdl.handle.net/11511/19540
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Evaluation of cement mortars by ultrasound
Paksoy, Nesibe Gözde; Yaman, İsmail Özgür; Department of Civil Engineering (2006)
Ultrasonic testing of concrete is often used for the assessment of its uniformity, strength, modulus of elasticity, durability and etc. therefore, the related parameters of testing such as the transducer frequency, the specimen geometry and etc. are well-known. On the other hand, most of the concrete properties are affected by the cement and the mechanical as well as some durability properties of cements are determined through cement mortars. Applications of ultrasound on determining the properties of cemen...
An improved finite grid solution for plates on generalized foundations
Karaşin, Abdulhalim; Gülkan, Polat; Department of Civil Engineering (2004)
In many engineering structures transmission of vertical or horizontal forces to the foundation is a major challenge. As a first approach to model it may be assumed that the foundation behaves elastically. For generalized foundations the model assumes that at the point of contact between plate and foundation there is not only pressure but also moments caused by interaction between the springs. In this study, the exact stiffness, geometric stiffness and consistent mass matrices of the beam element on two-para...
An investigation of the inertial interaction of building structures on shallow foundations with simplified soil-structure interaction analysis methods
Eyce, Bora; Bakır, Bahadır Sadık; Department of Civil Engineering (2009)
Seismic response of a structure is influenced by the inertial interaction between structure and deformable medium, on which the structure rests, due to flexibility and energy dissipation capability of the surrounding soil. The inertial interaction analyses can be performed by utilizing simplified soil-structure interaction (SSI) analyses methods. In literature, it is noted that varying soil conditions and foundation types can be modeled by using these SSI approaches with springdashpot couples having certain...
Development of a stability analysis program for block type quay walls and comparison of block placing methods
Nergiz, Cengiz; Ergin, Ayşen; Department of Civil Engineering (2010)
Block type quay walls are commonly used as berthing structures both in Turkey and worldwide. In this study, stability analysis of block type quay wall is carried out using pseudo-static method. A computer program named QSAP (using Excel spreadsheet) has been developed for the design of block type quay walls. QSAP has been prepared based on the rules of Turkish Seismic Design Codes for Coastal Structures, 2008. Reliability of this program is verified by a comparative study of Derince Port block type quay wal...
Dynamic characteristics and performance assessment of reinforced concrete structural walls
Kazaz, İlker; Gülkan, Polat; Department of Civil Engineering (2010)
The analytical tools used in displacement based design and assessment procedures require accurate strain limits to define the performance levels. Additionally, recently proposed changes to modeling and acceptance criteria in seismic regulations for both flexure and shear dominated reinforced concrete structural walls proves that a comprehensive study is required for improved limit state definitions and their corresponding values. This is due to limitations in the experimental setups, such that most previous...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Yapar, “Analysis of earthquake loading, wind loading and ice loading effects on guyed masts,” M.S. - Master of Science, Middle East Technical University, 2010.