Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comprehensive Analyses of Gaussian Graphical Model under Different Biological Networks
Date
2017-09-01
Author
Dokuzoglu, D.
Purutçuoğlu Gazi, Vilda
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
Naturally, genes interact with each other by forming a complicated network and the relationship between groups of genes can be shown by different functions as gene networks. Recently, there has been a growing concern in uncovering these complex structures from gene expression data by modeling them mathematically. The Gaussian graphical model is one of the very popular parametric approaches for modelling the underlying types of biochemical systems. In this study, we evaluate the performance of this probabilistic model via different criteria, from the change in dimension of the systems to the change in the distribution of the data. Hereby, we generate high dimensional simulated datasets via copulas and apply them in Gaussian graphical model to compare sensitivity, specificity, F-measure and various other accuracy measures. We also assess its performance under real datasets. We consider that such comprehensive analyses can be helpful for assessing the limitation of this common model and for developing alternative approaches, to overcome its disadvantages.
Subject Keywords
Lasso
,
Selection
URI
https://hdl.handle.net/11511/43023
Journal
ACTA PHYSICA POLONICA A
DOI
https://doi.org/10.12693/aphyspola.132.1106
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Application of copulas in graphical models for inference of biological systems
Dokuzoğlu, Damla; Purutçuoğlu Gazi, Vilda; Department of Statistics (2016)
Naturally, genes interact with each other by forming a complicated network and the relationship between groups of genes can be showed by different functions as gene networks. Recently, there has been a growing concern in uncovering these complex structures from gene expression data by modeling them mathematically. The Gaussian graphical model (GGM) is one of the very popular parametric approaches for modelling the underlying types of biochemical systems. In this study, we evaluate the performance of this pr...
Comparing Clustering Techniques for Real Microarray Data
Purutçuoğlu Gazi, Vilda (2012-08-29)
The clustering of genes detected as significant or differentially expressed provides useful information to biologists about functions and functional relationship of genes. There are variant types of clustering methods that can be applied in genomic data. These are mainly divided into the two groups, namely, hierarchical and partitional methods. In this paper, as the novelty, we perform a detailed clustering analysis for the recently collected boron microarray dataset to investigate biologically more interes...
INTEGRATION OF MACHINE LEARNING AND ENTROPY METHODS FOR POST-GENOME-WIDE ASSOCIATION STUDIES ANALYSIS
Yaldız, Burcu; Aydın Son, Yeşim; Department of Medical Informatics (2022-8-31)
Non-linear relationships between genotypes play an essential role in understanding the genetic interactions of complex disease traits. Genome-Wide Association Studies (GWAS) have revealed a statistical association between the SNPs in many complex diseases. As GWAS results could not thoroughly explain the genetic background of these disorders, Genome-Wide Interaction Studies started to gain importance. In recent years, various statistical approaches such as entropy-based methods have been suggested for revea...
Novel model selection criteria on high dimensionalbiological networks
Bülbül, Gül Baha; Purutçuoğlu Gazi, Vilda; Department of Statistics (2019)
Gaussian graphical model (GGM) is an useful tool to describe the undirected associ-ations among the genes in the sparse biological network. To infer such high dimen-sional biological networks, thel1-penalized maximum-likelihood estimation methodis used. This approach performs a variable selection procedure by using a regular-ization parameter which controls the sparsity in the network. Thus, a selection ofthe regularization parameter becomes crucial to define the true interactions in the bi-ological ne...
Long-tailed graphical model and frequentist inference of the model parameters for biological networks
AĞRAZ, MELİH; Purutçuoğlu Gazi, Vilda (Informa UK Limited, 2020-03-12)
The biological organism is a complex structure regulated by interactions of genes and proteins. Various linear and nonlinear models can define activations of these interactions. In this study, we have aimed to improve the Gaussian graphical model (GGM), which is one of the well-known probabilistic and parametric models describing steady-state activations of biological systems, and its inference based on the graphical lasso, shortly Glasso, method. Because, GGM with Glasso can have low accuracy when the syst...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Dokuzoglu and V. Purutçuoğlu Gazi, “Comprehensive Analyses of Gaussian Graphical Model under Different Biological Networks,”
ACTA PHYSICA POLONICA A
, pp. 1106–1111, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43023.