Structural and Interfacial Properties of Large Area n-a-Si:H/i-a-Si:H/p-c-Si Heterojunction Solar Cells

2013-08-26
Pehlivan, Ozlem
Menda, Deneb
Yilmaz, Okan
Kodolbas, Alp Osman
Ozdemir, Orhan
Duygulu, Ozgur
Kutlu, Kubilay
Tomak, Mehmet
Large area (72 cm(2)) doping inversed HIT solar cells (n-a-Si:H/i-a-Si:H/p-c-Si) were investigated by High Resolution Transmission Electron Microscopy (HR-TEM), Spectroscopic Ellipsometry (SE), Fourier Transform Infrared Attenuated Total Reflection spectroscopy (FTIR-ATR) and current-voltage (I-V) measurement. Mixture of microcrystalline and amorphous phase was identified via HR-TEM picture at the interface of i-a-Si:H/p-c-Si heterojunction. Using multilayer and Effective Medium Approximation (EMA) to the SE data, excellent fit was obtained, describing the evolution of microstructure of a-Si: H deposited at 225 degrees C on p-c-Si. Cody energy gap with combination of FTIR-ATR analyses were consistent with HRTEM and SE results in terms of mixture of microcrystalline and amorphous phase. Presence of such hetero-interface resulted poor open circuit voltage, V-oc, of the fabricated solar cell devices, determined by I-V measurement under 1 sun. Moreover, V-oc was also estimated from dark I-V analysis, revealing consistent V-oc values. Efficiencies of fabricated cells over complete c-Si wafer (72 cm2) were calculated as 4.7 and 9.2 %. Improvement in efficiency was interpreted due to the back surface cleaning and selecting aluminum/silver alloy as front contact.

Suggestions

Structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films
Gullu, H. H.; IŞIK, MEHMET; Hasanlı, Nızamı (2018-10-15)
The structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films were investigated by Xray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and optical transmittance measurements. The effect of annealing temperature on the results of applied techniques was also studied in the present paper. EDS results revealed that each of the elements, Cu, Ga and S are presented in the films and Cu and Ga concentration increases whereas S concentration decr...
Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb)
Kocak, B.; ÇİFTCİ, YASEMİN; Sürücü, Gökhan (2017-01-01)
We have explored the structural, electronic, optical, and mechanical properties of the magnesium-based chalcopyrites MgSiP2, MgSiAs2, and MgSiSb2 using density functional theory with five different generalized gradient approximation (GGA) functionals: Perdew-Wang (1991), Perdew-Burke-Ernzerhof, revised Perdew-Burke-Ernzerhof, modified Perdew-Burke-Ernzerhof for solids, and Armiento-Mattson (2005) as well as the local density approximation. Change of the constituent element from P to Sb significantly affecte...
Structural, electrical and optical characterization of ge-implanted gase single crystal grown by Bridgman Method
Karaağaç, Hazbullah; Akınoğlu, Bülent Gültekin; Department of Physics (2005)
In this work, structural, electrical and optical characterization of as-grown, Ge-implanted, and annealed GaSe single crystals grown by using 3-zone vertical Bridgman-Stockbarger system, have been studied by carrying out X-ray Diffraction (XRD), electrical conductivity, Hall effect, photoconductivity, and spectral transmission measurements. The temperature dependent electrical conductivity of these samples have been measured between 100 and 400 K. As a result, it was observed that upon implanting GaSe with ...
Structural and electronic properties of single-wall GaN nanotubes: semi-empirical SCF-MO calculations
Erkoc, S; Malcıoğlu, Osman Barış; Tasci, E (Elsevier BV, 2004-04-09)
The structural and electronic properties of armchair and zigzag models of single-wall GaN nanotubes have been investigated by performing semi-empirical molecular orbital self-consistent field calculations at the level of PM3 method within the RHF formulation. It has been found that these structures are stable and endothermic. The armchair model has zero net dipole moment, whereas the zigzag model has nonzero net dipole moment. It has been found that GaN armchair tube with even number of hexagonal rings on t...
Structural and Thermal Properties of Indium Phosphide Nanoparticles: Molecular Dynamics Simulations
Nayir, Nadire; Tasci, Emre S.; Erkoç, Şakir (2015-09-01)
Structural and thermal properties of Indium Phosphide spherical nanoparticles at various sizes have been investigated via classical molecular dynamics simulations using an atomistic potential energy function. The initial configurations of the nanoparticles were chosen as spheres generated from the zinc blende crystalline structure. To investigate the relation between the size and the heat capacity, the simulations were realized at temperatures in the range of 1-1300 K under both equilibrium and non-equilibr...
Citation Formats
O. Pehlivan et al., “Structural and Interfacial Properties of Large Area n-a-Si:H/i-a-Si:H/p-c-Si Heterojunction Solar Cells,” 2013, vol. 8823, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43068.