Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization

2004-10-21
Ozdemir, MS
Eyüboğlu, Behçet Murat
Ozbek, O
In this study, a direct, fast image reconstruction algorithm, based on the fact that equipotential lines are perpendicular to current lines in a volume conductor, is proposed for magnetic resonance electrical impedance tomography (MR-EIT). The proposed technique is evaluated both on simulated and measured data for conductor and insulator objects.
PHYSICS IN MEDICINE AND BIOLOGY

Suggestions

Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Equipotential projection based MREIT reconstruction without potential measurements
Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is used to produce high resolution images of true conductivitv distribution. Images are reconstructed by utilising measurements of magnetic flux density distribution and surface potentials. Surface potential measurements are needed to reconstruct true conductivity values. In this study, a novel MREIT reconstruction algorithm is developed to generate conductivity images without utilizing the surface potential measurements. The proposed algorithm and ...
Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) and its expansion to multi-physics multi-contrast magnetic resonance imaging
Sadighi, Mehdi; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2021-6-01)
Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) is one of the emerging imaging modalities to obtain low-frequency anisotropic conductivity distribution employing diffusion tensor imaging (DTI) and magnetic resonance electrical impedance tomography (MREIT) techniques. DT-MREIT is based on the linear relationship between the conductivity and water self-diffusion tensors(C and D) in a porous medium. On the other hand, knowledge of the current density (J) distribution is used in m...
Realization of magnetic resonance current density imaging at 3 Tesla,
Göksu, Cihan; SADIGHI, MEHDI; Eyüboğlu, Behçet Murat (2014-08-26)
Magnetic Resonance Current Density Imaging (MRCDI) is an imaging modality, which reconstructs electrical current density distribution inside a material by using Magnetic Resonance Imaging (MRI) techniques. In this study, a current source with maximum current injection capability of 224.7mA, under 1k Omega resistive load is used. Experiments are performed with a 2D uniform phantom, in which a current steering insulator is inserted. Magnetic flux density distributions are measured, and current density images ...
Practical Realization of Magnetic Resonance Conductivity Tensor Imaging (MRCTI)
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2013-03-01)
Magnetic resonance conductivity tensor imaging (MRCTI) is an emerging modality which reconstructs images of anisotropic conductivity distribution within a volume conductor. Images are reconstructed based on magnetic flux density distribution induced by an externally applied probing current, together with a resultant surface potential value. The induced magnetic flux density distribution is measured using magnetic resonance current density imaging techniques. In this study, MRCTI data acquisition is experime...
Citation Formats
M. Ozdemir, B. M. Eyüboğlu, and O. Ozbek, “Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization,” PHYSICS IN MEDICINE AND BIOLOGY, pp. 4765–4783, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43258.