A new concatenated type construction for LCD codes and isometry codes

2018-03-01
CARLET, Claude
Guneri, Cem
Özbudak, Ferruh
SOLÉ, Patrick
We give a new concatenated type construction for linear codes with complementary dual (LCD) over small finite fields. In this construction, we need a special class of inner codes that we call isometry codes. Our construction generalizes a recent construction of Carlet et al. (2014-2016) and of Gtineri et al. (2016). In particular, it allows us to construct LCD codes with improved parameters directly.
DISCRETE MATHEMATICS

Suggestions

Belief propagation decoding of polar codes under factor graph permutations
Peker, Ahmet Gökhan; Yücel, Melek Diker; Department of Electrical and Electronics Engineering (2018)
Polar codes, introduced by Arıkan, are linear block codes that can achieve the capacity of symmetric binary-input discrete memoryless channels with low encoding and decoding complexity. Polar codes of block length N are constructed by channel polarization method, which consists of channel combining and splitting operations to obtain N polarized subchannels from N copies of binary-input discrete memoryless channels. As N grows, symmetric channel capacities of the polarized subchannels converge to either 0 or...
New cubic self-dual codes of length 54, 60 and 66
Comak, PINAR; Kim, Jon Lark; Özbudak, Ferruh (2018-08-01)
We study the construction of quasi-cyclic self-dual codes, especially of binary cubic ones. We consider the binary quasi-cyclic codes of length with the algebraic approach of Ling and Sol, (IEEE Trans Inf Theory 47(7):2751-2760, 2001. doi:. In particular, we improve the previous results by constructing 1 new binary [54, 27, 10], 6 new [60, 30, 12] and 50 new [66, 33, 12] cubic self-dual codes. We conjecture that there exist no more binary cubic self-dual codes with length 54, 60 and 66.
LCD codes from tridiagonal Toeplitz matrices
Shi, Minjia; Özbudak, Ferruh; Xu, Li; Solé, Patrick (2021-10-01)
Double Toeplitz (DT) codes are codes with a generator matrix of the form (I,T) with T a Toeplitz matrix, that is to say constant on the diagonals parallel to the main. When T is tridiagonal and symmetric we determine its spectrum explicitly by using Dickson polynomials, and deduce from there conditions for the code to be LCD. Using a special concatenation process, we construct optimal or quasi-optimal examples of binary and ternary LCD codes from DT codes over extension fields.
A Bound on the Minimum Distance of Quasi-cyclic Codes
Gueneri, Cem; Özbudak, Ferruh (2012-01-01)
We give a general lower bound for the minimum distance of q-ary quasi-cyclic codes of length ml and index l, where m is relatively prime to q. The bound involves the minimum distances of constituent codes of length l as well as the minimum distances of certain cyclic codes of length m which are related to the fields over which the constituents are defined. We present examples which show that the bound is sharp in many instances. We also compare the performance of our bound against the bounds of Lally and Es...
Construction of Some Codes Suitable for Both Side Channel and Fault Injection Attacks
Carlet, Claude; GÜNERİ, CEM; Mesnager, Sihem; Özbudak, Ferruh (2018-12-30)
Using algebraic curves over finite fields, we construct some codes suitable for being used in the countermeasure called Direct Sum Masking which allows, when properly implemented, to protect the whole cryptographic block cipher algorithm against side channel attacks and fault injection attacks, simultaneously. These codes address a problem which has its own interest in coding theory.
Citation Formats
C. CARLET, C. Guneri, F. Özbudak, and P. SOLÉ, “A new concatenated type construction for LCD codes and isometry codes,” DISCRETE MATHEMATICS, pp. 830–835, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43867.