Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
PO-BASED CHARACTERISTIC BASIS FINITE ELEMENT METHOD (CBFEM-PO)-A PARALLEL, ITERATION-FREE DOMAIN DECOMPOSITION ALGORITHM USING PERFECTLY MATCHED LAYERS FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING PROBLEMS
Date
2010-05-01
Author
Ozgun, Ozlem
Mittra, Raj
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
In this article, we introduce a new type of Characteristic Basis Finite Element Method (CBFEM), which is based on the concepts of Physical Optics (PO) and Perfectly Matched Layers (PMLs), for solving large-scale electromagnetic scattering problems in a rigorous and efficient manner. This parallel and iteration-free technique, called CBFEM-PO, decomposes the computational domain into a number of subdomains, and generates three types of characteristic basis functions (CBEs) that are specially-tailored to each individual subdomain. Of these, the first two types of CBEs are comprised of primary and secondary bases arising from the self-interactions in each subdomain and mutual-couplings between different subdomains, respectively. They are obtained by solving the localized problem in each subdomain, isolated by PML regions. The third-type of CBEs are derived by using the PO fields for different incident angles, polarization, and frequency. Two important salutary features of the proposed technique are: considerable reduction in the matrix size, which makes it feasible to use direct solvers; and convenient parallelizability that enables us to decrease the overall computation time by utilizing parallel platforms. We present a number of representative examples to illustrate the versatility of the method in solving 3D electromagnetic scattering problems. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1053-1060, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25134
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/44009
Journal
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
DOI
https://doi.org/10.1002/mop.25134
Collections
Department of Electrical and Electronics Engineering, Article