Neural network method for direction of arrival estimation with uniform cylindrical microstrip patch array

2010-02-01
Caylar, S.
Dural, G.
Leblebicioğlu, Mehmet Kemal
In this study, a new neural network algorithm is proposed for real-time multiple source tracking problem with cylindrical patch antenna array based on a previously reported Modified Neural Multiple Source Tracking (MN-MUST) algorithm. The proposed algorithm, namely cylindrical microstrip patch array modified neural multiple source tracking (CMN-MUST) algorithm implements MN-MUST algorithm on a cylindrical microstrip patch array structure. CMN-MUST algorithm uses the advantage of directive pattern of microstrip patch elements by considering only a part of array elements for a chosen sector. This reduces neural network sizes and also improves the spatial filtering performance. The proposed algorithm improves MN-MUST algorithm in the sense of accuracy and speed while covering the full azimuth range.
IET MICROWAVES ANTENNAS & PROPAGATION

Suggestions

Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm
SEÇMEN, MUSTAFA; Sayan, Gönül (Institution of Engineering and Technology (IET), 2009-12-01)
This study introduces a novel aspect and polarisation invariant radar target classification method based on the use of multiple signal classification (MUSIC) algorithm for feature extraction. In the suggested method, for each candidate target at each designated reference aspect, feature matrices called 'MUSIC spectrum matrices (MSMs)' are constructed using the target's scattered data at different late-time intervals. An individual MSM corresponds to a map of a target's natural resonance-related power distri...
Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics
Ergül, Özgür Salih (Institution of Engineering and Technology (IET), 2008-01-03)
A hierarchical parallelisation of the multilevel fast multipole algorithm (MLFMA) for the efficient solution of large-scale problems in computational electromagnetics is presented. The tree structure of MLFMA is distributed among the processors by partitioning both the clusters and the samples of the fields appropriately for each level. The parallelisation efficiency is significantly improved compared to previous approaches, where only the clusters or only the fields are partitioned in a level.
Neural network based beamforming for linear and cylindrical array applications
Güreken, Murat; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2009)
In this thesis, a Neural Network (NN) based beamforming algorithm is proposed for real time target tracking problem. The algorithm is performed for two applications, linear and cylindrical arrays. The linear array application is implemented with equispaced omnidirectional sources. The influence of the number of antenna elements and the angular seperation between the incoming signals on the performance of the beamformer in the linear array beamformer is studied, and it is observed that the algorithm improves...
Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2008-08-01)
We present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the imp...
Pre-processing inputs for optimally-configured time-delay neural networks
Taşkaya Temizel, Tuğba; Ahmad, K (Institution of Engineering and Technology (IET), 2005-02-01)
A procedure for pre-processing non-stationary time series is proposed for modelling with a time-delay neural network (TDNN). The procedure stabilises the mean of the series and uses a fast Fourier transform to determine the TDNN input size. Results of applying this procedure on five well-known data sets are compared with existing hybrid neural network techniques, demonstrating improved prediction performance.
Citation Formats
S. Caylar, G. Dural, and M. K. Leblebicioğlu, “Neural network method for direction of arrival estimation with uniform cylindrical microstrip patch array,” IET MICROWAVES ANTENNAS & PROPAGATION, pp. 153–161, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44041.