Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the influence of fixed point free nilpotent automorphism groups
Download
index.pdf
Date
2017-12-01
Author
Ercan, Gülin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
305
views
0
downloads
Cite This
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that for all nonidentity elements . Let FH be a Frobenius-like group with complement H of prime order such that is of prime order. Suppose that FH acts on a finite group G by automorphisms where in such a way that In the present paper we prove that the Fitting series of coincides with the intersections of with the Fitting series of G, and the nilpotent length of G exceeds the nilpotent length of by at most one. As a corollary, we also prove that for any set of primes , the upper -series of coincides with the intersections of with the upper -series of G, and the - length of G exceeds the -length of by at most one.
Subject Keywords
Frobenius-like group
,
Fixed points
,
Nilpotent length
,
Pi-length
URI
https://hdl.handle.net/11511/44093
Journal
MONATSHEFTE FUR MATHEMATIK
DOI
https://doi.org/10.1007/s00605-016-0970-5
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Action of a Frobenius-like group with kernel having central derived subgroup
Ercan, Gülin (2016-09-01)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that [F, h] = F for all nonidentity elements h is an element of H. Suppose that a finite group G admits a Frobenius-like group of auto-morphisms FH of coprime order with [F', H] = 1. In case where C-G( F) = 1 we prove that the groups G and C-G( H) have the same nilpotent length under certain additional assumptions.
Derived length of a Frobenius-like kernel
Ercan, Gülin; Khukhro, Evgeny (2014-08-15)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F called kernel which has a nontrivial complement H such that FH/[F,F] is a Frobenius group with Frobenius kernel F/[F,F]. Suppose that a Frobenius-like group FH acts faithfully by linear transformations on a vector space V over a field of characteristic that does not divide vertical bar FH vertical bar. It is proved that the derived length of the kernel F is bounded solely in terms of the dimension m = dim C-V(H...
Frobenius-like groups as groups of automorphisms
Ercan, Gülin; Khukhro, Evgeny (2014-01-01)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that FH/[F,F] is a Frobenius group with Frobenius kernel F/[F, F]. Such subgroups and sections are abundant in any nonnilpotent finite group. We discuss several recent results about the properties of a finite group G admitting a Frobenius-like group of automorphisms FH aiming at restrictions on G in terms of C-G(H) and focusing mainly on bounds for the Fitting height and rela...
Action of a Frobenius-like group
Güloǧlu, Ismail Ş.; Ercan, Gülin (2014-03-15)
We call a finite group Frobenius-like if it has a nontrivial nilpotent normal subgroup F possessing a nontrivial complement H such that [F, h] = F for all nonidentity elements h is an element of H. We prove that any irreducible nontrivial FH-module for a Frobenius-like group FH of odd order over an algebraically closed field has an H-regular direct summand if either F is fixed point free on V or F acts nontrivially on V and the characteristic of the field is coprime to the order of F. Some consequences of t...
On the nilpotent length of a finite group with a frobenius group of automorphisms
Öğüt, Elif; Ercan, Gülin; Güloğlu, İsmail Ş.; Department of Mathematics (2013)
Let G be a finite group admitting a Frobenius group FH of automorphisms with kernel F and complement H. Assume that the order of G and FH are relatively prime and H acts regularly on the fixed point subgroup of F in G. It is proved in this thesis that the nilpotent length of G is less than or equal to the sum of the nilpotent length of the commutator group of G and F with 1 and the nilpotent length of the commutator group of G and F is equal to the nilpotent length of the fixed point subgroup of H in the co...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ercan, “On the influence of fixed point free nilpotent automorphism groups,”
MONATSHEFTE FUR MATHEMATIK
, pp. 531–538, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44093.