Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Scalar neutrinos at the LHC
Download
index.pdf
Date
2011-05-03
Author
Demir, Durmus A.
Frank, Mariana
Selbuz, Levent
Turan, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
72
views
0
downloads
Cite This
We study a softly broken supersymmetric model whose gauge symmetry is that of the standard model gauge group times an extra Abelian symmetry U(1)'. We call this gauge-extended model the U(1)' model, and we study a U(1)' model with a secluded sector such that neutrinos acquire Dirac masses via higher-dimensional terms allowed by the U(1)' invariance. In this model the mu term of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly cancellation, and extra singlet bosons for achieving correct Z'/Z mass hierarchy. The neutrinos are charged under U(1)', and thus, their production and decay channels differ from those in the MSSM in strength and topology. We implement the model into standard packages and perform a detailed analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios, concentrating on three types of signals: (1) 0l + MET, (2) 2l + MET, and (3) 4l + MET. We compare the results with those of the MSSM whenever possible, and analyze the standard model background for each signal. The sneutrino production and decays provide clear signatures enabling distinction of the U(1)' model from the MSSM at the LHC.
Subject Keywords
Nuclear and High Energy Physics
URI
https://hdl.handle.net/11511/44385
Journal
PHYSICAL REVIEW D
DOI
https://doi.org/10.1103/physrevd.83.095001
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Noncommutative nonlinear sigma models and integrability
Kürkcüoğlu, Seçkin (American Physical Society (APS), 2008-09-01)
We first review the result that the noncommutative principal chiral model has an infinite tower of conserved currents and discuss the special case of the noncommutative CP1 model in some detail. Next, we focus our attention to a submodel of the CP1 model in the noncommutative spacetime A(theta)(R2+1). By extending a generalized zero-curvature representation to A(theta)(R2+1) we discuss its integrability and construct its infinitely many conserved currents. A supersymmetric principal chiral model with and wi...
Magnetic dipole moment of the light tensor mesons in light cone QCD sum rules
Alıyev, Tahmasıb; Savcı, Mustafa (IOP Publishing, 2010-07-01)
The magnetic dipole moments of the light tensor mesons f(2), a(2) and the strange K-2*(0)(1430) tensor meson are calculated in the framework of the light cone QCD sum rules. It is observed that the values of the magnetic dipole moment for the charged tensor particles are considerably different from zero. These values are very close to zero for the light neutral f(2) and a(2) tensor mesons, while it has a small nonzero value for the neutral strange K-2*(0)(1430) tensor meson.
Scalar form factor of the nucleon and nucleon-scalar meson coupling constant in QCD
Alıyev, Tahmasıb; Savcı, Mustafa (American Physical Society (APS), 2007-02-01)
Scalar form factor of the nucleon is calculated in the framework of light-cone QCD sum rules, using the most general form of the baryon current. Using the result on scalar form factor of the nucleon, the nucleon-scalar sigma and a(0) meson coupling constants are estimated. Our results on these couplings are in good agreement with the prediction of the external-field QCD sum rules method.
Angular coefficients of Z bosons produced in pp collisions at root S=8 TeV and decaying to mu(+)mu(-) as a function of transverse momentum and rapidity
Khachatryan, V.; et. al. (Elsevier BV, 2015-11-01)
Measurements of the five most significant angular coefficients, A(0) through A(4), for Z bosons produced in pp collisions at root S = 8 TeV and decaying to mu(+)mu(-) are presented as a function of the transverse momentum and rapidity of the Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 fb(-1). These measurements provide comprehensive information about the Z boson production mechanisms, and are compared to the QCD predictions at leading orde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. A. Demir, M. Frank, L. Selbuz, and İ. Turan, “Scalar neutrinos at the LHC,”
PHYSICAL REVIEW D
, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44385.