Sizing and optimization of the horizontal tail of a jet trainer

Download
2019
Karatoprak, Sinem
The sizing of the horizontal tail has a priority on the design phase. The horizontal tail provides a necessary longitudinal control and the sufficient static stability throughout the defined center-of-gravity (CG) range. The jet trainer of this study is a control-configured vehicle (CCV). The control system has a significant role in shaping the aircraft with the usage of active control technology (ACT). ACT introduces the concept of relaxed static stability (RSS) by providing artificial stability. The horizontal tail provides sufficient longitudinal static stability even at the most aft CG position. In order to determine whether an aircraft is stable, the determination of the static margin (SM) is one of methods. For a conventional aircraft, static margin is approximately 5 % in the subsonic regime. However, a large backward aerodynamic center (AC) shift occurs between subsonic to supersonic. This causes a large increase in static margin at supersonic flight regime which penalize the performance in terms of drag and weight. Therefore, the size of the horizontal tail is reduced by utilizing from RSS concept.Some stability and control derivatives- such as Cmα, Cmδ , CLδ -are needed to obtain during the evaluation of the control authority and stability of the aircraft. The evaluations are based on the defined certain parameters and force and moment equilibrium equations. Therefore, analyses based on Datcom and Computational Fluid Dynamics (CFD) were performed for six horizontal tails. CM, CL, and CD aerodynamic coefficients of each horizontal tail were calculated at different AoAs throughout flight envelope.

Suggestions

Comparison of chevron and suspended-zipper braced steel frames
Ozcelik, Yigit; Sarıtaş, Afşin; Clayton, Patricia M. (2016-03-01)
Suspended-zipper braced frame is a modified configuration of chevron braced frame in which zipper columns are added between story beams and a hat truss is attached between top two stories in order to redistribute the unbalanced vertical forces emerging following the brace buckling to avoid the use of deep beams. In this study, three- and nine-story chevron and suspended-zipper braced frames are analyzed to compare their seismic performances. The beams, columns, braces and zipper columns are modeled using no...
Structural Fire Safety of Circular Concrete Railroad Tunnel Linings
Caner, Alp (American Society of Civil Engineers (ASCE), 2009-09-01)
In many tunnel designs, lining cross section is selected based on construction requirements rather than design loads. A constant cross section is typically used along a tunnel especially for tunnels constructed by tunnel boring machines (TBMs). Factor of safety against failure is typically high at shallow depth regions of alignment. Minor repairable damage is targeted at rare events such as earthquakes, train derailments, explosions, and long-duration fires, and a reduction to service load factor of safety ...
Vibration Analysis of a Cracked Beam on an Elastic Foundation
Batihan, Ali Cagri; Kadıoğlu, Fevzi Suat (2016-06-01)
The transverse vibrations of cracked beams with rectangular cross sections resting on Pasternak and generalized elastic foundations are considered. Both the Euler-Bernoulli (EB) and Timoshenko beam (TB) theories are used. The open edge crack is represented as a rotational spring whose compliance is obtained by the fracture mechanics. By applying the compatibility conditions between the beam segments at the crack location and the boundary conditions, the characteristic equations are derived, from which the n...
Optimum geometry design of geodesic domes using harmony search algorithm
Saka, M. P. (2007-12-01)
The optimum geometry design of geodesic domes presents difficulty due to the fact that the height of the dome keeps on changing during the design process. This in turn makes it necessary to automate the computation of the coordinates of joints in the dome when the height of crown changes. The algorithm presented in this study carries out the optimum geometry design of single layer geodesic domes. It treats the height of the crown as design variable in addition to the cross-sectional designations of members....
An artificial immune system approach for B-spline surface approximation problem
ÜLKER, ERKAN; İşler, Veysi (2007-05-30)
In surface fitting problems, the selection of knots in order to get an optimized surface for a shape design is well-known. For large data, this problem needs to be dealt with optimization algorithms avoiding possible local optima and at the same time getting to the desired solution in an iterative fashion. Many computational intelligence optimization techniques like evolutionary optimization algorithms, artificial neural networks and fuzzy logic have already been successfully applied to the problem. This pa...
Citation Formats
S. Karatoprak, “Sizing and optimization of the horizontal tail of a jet trainer,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.