Determining Photovoltaic Module Performance and Comparisons

2018-11-14
Karaveli, Abdullah Buğrahan
ÖZDEN, TALAT
Akınoğlu, Bülent Gültekin
Knowing electricity production potential of a photovoltaic (PV) system prior to installation is very beneficial for the investor to see the feasibility of the investment. There are three procedures that can be followed to calculate the potential electricity production of any system under different conditions. These are installation of sample systems and gathering data over time, the use of some databases/software programs to reach the performances and developing new model/methodology to make these estimations. It is obvious that installation of PV systems everywhere is neither technically nor economically conceivable. On the other hand, global software programs may not reflect local conditions to calculations. Consequently, there is a need to develop methodology that is able to derive location specific equations and coefficients and make accurate estimations. Its accuracy can be controlled by validating the results for some locations with the measured values from already installed PV power plants (PV PP). So, in this study we initially develop a methodology to calculate efficiency and electricity production performance of some modules for Ankara and compare the results with the measured values owing to the system installed on the roof of the Middle East Technical University Solar Energy Research Center (METU GUNAM) in Ankara/Turkey. The methodology initially calculates solar irradiation falling on the modules that is the input. Then the performance of the module is calculated by using developed methodology. There are also some online software programs to calculate the performances, such as EU PVGIS and PV WATTS. We analyzed and used these software programs and compare their results with the results of newly developed methodology. As proven through mean-bias error (MBE), root-mean-square error (RMSE) and mean absolute error (MAE) statistical comparison methods, the methodology of this study has given the most accurate results.

Suggestions

Optimal sizing of stand-alone photovoltaic systems in residential buildings
Okoye, Chiemeka Onyeka; Solyali, Oguz (2017-05-01)
Solar photovoltaic (PV) system is one of the matured solar-to-electricity conversion technologies with a great potential for residential applications. For wider adoption of PV systems, there is a need for an accurate sizing and economic assessment tool to inform decision makers. In this study, we propose a new optimization model based on integer programming for the adoption of stand-alone PV systems in the residential sector. The proposed model not only determines the optimal number of PV modules and batter...
LONG TERM PERFORMANCE AND DEGRADATION RATES OF PV MODULES IN CENTRAL ANATOLIA
Cantürk, Zeynep; Akınoğlu, Bülent Gültekin; Özden, Talat; Department of Physics (2021-9-09)
Outdoor tests of photovoltaic modules are crucial for the market, and technological development. It is vital for manufacturers and researchers to conduct tests not only in the long term but also in different climatic conditions. In this thesis, 12 modules are tested in Middle Anatolia climate conditions for nine years in three different module groups, which are mono-crystalline (Mono-Si-1 & 2 & 3, Bifi-Mono-Si, HIT), polycrystalline (Poly-Si-1 & 2), and thin films (CIS-1 & 2, CIGS-1 & 2, µSi/a-Si). We analy...
Daily and Monthly Module Temperature Variation for 9 Different Modules
Özden, Talat ; Tolgay, Doga; Akınoğlu, Bülent Gültekin (2018-11-14)
One of the main parameter affecting the efficiency of PV modules is the module temperature. In this respect, outdoor testing of modules is very important to determine the temperature dependent performances and degradation rates. In this work, we analyzed the module temperatures of 9 different modules tested in the outdoor testing facility of METU-GUNAM, Ankara (latitude similar to 40 degrees N, in Central Anatolia and the climate is dry continental). The tested module types are two CIS (identical), one mu c...
Optimum bidding strategy for wind and solar power plants in day-ahead electricity market
Özcan, Mehmet; Keysan, Ozan; Satır, Benhür (2021-01-01)
There are two possible strategies for wind power plants (WPPs) and solar power plants (SPPs) to maximize their income in day ahead markets (DAM) in the presence of imbalance cost: joint bidding (JB) via collaboration by participating to balancing groups and deployment of storage technologies. There are limited studies in the literature covering the comparative analysis of “JB strategy” with “battery deployment (BD) strategy”. In the existence of balancing responsibility, the comparative analysis of these st...
Evaluation of Grid-Connected PV Converter Power Module Technologies in Terms of Efficiency, Initial Cost, and Return on Investment Time
Oztoprak, Oguzhan; Hava, Ahmet Masum (2019-01-01)
The voltage source converter (VSC) of the grid connected photovoltaic (PV) systems is the most technological component in a PV system and contributes to 5-15% of the whole investment. As the cost and energy efficiency of a VSC are two factors that determine the total system economics, the system total cost of ownership (TCO) should be optimized during the VSC design. This paper provides a design methodology for grid connected VSCs considering TCO, the return on investment (ROI) and payback period (PP) as th...
Citation Formats
A. B. Karaveli, T. ÖZDEN, and B. G. Akınoğlu, “Determining Photovoltaic Module Performance and Comparisons,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44597.