Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Profit-oriented disassembly-line balancing
Download
index.pdf
Date
2008-01-01
Author
ALTEKİN, FATMA TEVHİDE
Kandiller, Levent
Özdemirel, Nur Evin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
93
downloads
Cite This
As product and material recovery has gained importance, disassembly volumes have increased, justifying construction of disassembly lines similar to assembly lines. Recent research on disassembly lines has focused on complete disassembly. Unlike assembly, the current industry practice involves partial disassembly with profit-maximization or cost-minimization objectives. Another difference between assembly and disassembly is that disassembly involves additional precedence relations among tasks due to processing alternatives or physical restrictions. In this study, we define and solve the profit-oriented partial disassembly-line balancing problem. We first characterize different types of precedence relations in disassembly and propose a new representation scheme that encompasses all these types. We then develop the first mixed integer programming formulation for the partial disassembly-line balancing problem, which simultaneously determines (1) the parts whose demand is to be fulfilled to generate revenue, (2) the tasks that will release the selected parts under task and station costs, (3) the number of stations that will be opened, (4) the cycle time, and (5) the balance of the disassembly line, i.e. the feasible assignment of selected tasks to stations such that various types of precedence relations are satisfied. We propose a lower- and upper-bounding scheme based on linear programming relaxation of the formulation. Computational results show that our approach provides near optimal solutions for small problems and is capable of solving larger problems with up to 320 disassembly tasks in reasonable time.
Subject Keywords
Disassembly
,
Line balancing
,
Precedence relations
URI
https://hdl.handle.net/11511/44601
Journal
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
DOI
https://doi.org/10.1080/00207540601137207
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Stochastic assembly line balancing problems involving robots and reliability restriction
Şahin, Muhammet Ceyhan; Tural, Mustafa Kemal; Department of Industrial Engineering (2022-7-1)
When considering assembly processes in the manufacturing ecosystem, the task times may vary from cycle to cycle, especially in assembly lines where manual operations are abundant. Line stops, defective products, and off-line tasks caused by the uncertainty in assembly processes can be highly costly for companies. Stochastic assembly line balancing problems (SALBPs) consider the task processing times as random variables to deal with uncertainty in real-life assembly operations. The difficulties faced due to...
Disassembly line balancing with limited supply and subassembly availability
Altekin, FT; Kandiller, L; Özdemirel, Nur Evin (2003-10-30)
Disassembly line balancing problem (DLBP) aims at finding a feasible assignment of disassembly tasks to workstations such that precedence relations among tasks are satisfied and some measure of effectiveness is optimized. We consider partial disassembly under limited supply of a single product as well as availability of its subassemblies. Hence, in satisfying the demand for revenue generating parts, both discarded products and available subassemblies can be utilized. We assume that part revenues and demand,...
Analysis of flexible pavements incorporating nonlinear resilient behavior of unbound granular layers
Karagöz, Cem; Acar, Soner Osman; Department of Civil Engineering (2004)
Traditionally, the resilient modulus values obtained from repeated unconfined or triaxial compression tests are used as the elastic modulus of granular layers in structural analysis of flexible pavements. Sometimes the resilient modulus of granular materials are estimated from known California bearing ratios (CBR) or stabilometer resistance (R) values by simple regression equations. On the other hand, it is well known that stress-strain relation for unbound granular materials is nonlinear and the resilient ...
Dynamic modeling of spindle-tool assemblies in machining centers
Ertürk, Alper; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2006)
Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality, reduced material removal rate and damage on the machine tool itself. Stability lobe diagrams supply stable depth of cut ا spindle speed combinations and they can be used to avoid chatter. The main requirement for generating the stability lobe diagrams is the system dynamics information at the tool tip in the form of point frequency response function (FRF). In this work, an analytical model ...
Hierarchical and modular control of reconfigurable manufacturing systems
Arslan, Övül; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2022-2-11)
Reconfigurable manufacturing systems (RMS) were introduced as a new manufacturing concept for rapidly adjusting the production capacity and functionality of manufacturing systems. Hereby, the control of RMS requires realizing each desired configuration and changing between configurations on request, whereby a suitable design approach should scale to large-scale systems. In this thesis, we develop a controller design method for RMS that supports modular design and is scalable to RMS of large size. As the f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. T. ALTEKİN, L. Kandiller, and N. E. Özdemirel, “Profit-oriented disassembly-line balancing,”
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
, pp. 2675–2693, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44601.