Matrix-fracture transfer in non-isothermal conditions

Download
2020
Tavakkoli Osgouei , Yashar
A numerical and experimental study was carried out to investigate matrix-fracture transfer in fractured porous media. Film type heat flux sensors were installed in four different synthetically fractured core plugs to measure the temperature and heat flux in fracture during cold water injection. Experimental values of heat flux were used to calculate convective heat transfer coefficient. Fracture temperatures were used to calibrate numerical model developed using CMG-STARS simulator to evaluate contributing matrix thermal properties. The results show that the temperature decrease in fracture is lower when rock matrix has higher thermal properties. The variations in heat flux and temperature difference along matrix-fracture interface with respect to time necessitates the use of variable convective heat transfer coefficients for accurate analysis of matrix-fracture heat transfer. Moreover, results of tracer experiments where Rhodamine B solution was injected at a flow rate of 1 cc/min and outer temperature of 70 °C was used to determine dispersion coefficients using aforementioned numerical model. Sensitivity analysis of the numerical model indicated that thermal properties of matrix are effective in matrix-fracture mass transfer similar to injection rate. To illustrate, the solute penetration is higher in core plugs with larger matrix thermal properties that provide larger temperature gradient over matrix-fracture interface. This can be explained by the Soret effect that is kind of coupled heat and mass transfer at non-isothermal conditions.

Suggestions

Experimental and numerical study of flow and thermal transport in fractured rock
Tavakkoli Osgouei, Yashar; Akın, Serhat (Springer Science and Business Media LLC, 2021-01-01)
An experimental and numerical study was carried out to investigate matrix-fracture thermal transport in fractured rock. Two different synthetically fractured core plugs were used during the flow-through experiments while core plugs' outer surface was maintained at two different constant temperatures. To investigate the matrix-fracture thermal transport, cold water was injected through the single fracture core plugs at different flow rates. A film type heat flux sensor was used in the fractured core plug to ...
An optimization study for rotorcraft avionics bay cooling
Akin, Altug; Kahveci, Harika Senem (2019-07-01)
In this paper, a computational investigation of a rotorcraft avionics-bay cooling system is carried out. The introduced avionics cooling system utilizes a forced-convection method in which the ambient air is supplied to the avionics bay by a fan and then exhausted back into the ambient after cooling the equipment inside. The aim of this system is to keep the air temperature in the vicinity of the avionics equipment below the operational temperature limits. Depending on the locations of the fan and exhaust, ...
Numerical and experimental analysis of quench induced stresses and microstructures
Gür, Cemil Hakan (1998-01-01)
Numerical and experimental studies have been carried out to investigate the evolution of residual stresses and microstructures in quenched steel components. In the numerical analysis, a finite element model is implemented for predicting the temperature field, phase changes with their associated internal stresses in axisymmetrical components. The model is verified by several comparisons with other known numerical results. Case studies are performed to investigate the effects of the quench bath temperature an...
Comparison of physical and numerical dam-break simulations
Bozkuş, Zafer (Turkiye Bilimsel ve Teknik Arastirma Kurumu, 1998-01-01)
Laboratory data obtained from model studies of an existing dam under three different failure scenarios are presented. Moreover, the numerical failure simulations of the same dam were performed by employing two state-of-the-art numerical models, namely, SMPDBK and DAMBRK, both developed at the National Weather Service (NWS) in the United States. Comparison of the measured and computed results indicate that both numerical models predict peak flood elevation with somewhat reasonable accuracy. However, the resu...
Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models
Pulatsu, Bora; Erdogmus, Ece; Lourenco, Paulo B.; Lemos, Jose; Tuncay, Kağan (2020-06-01)
This study presents a numerical investigation on the fracture mechanism of tension stiffening phenomenon in reinforced concrete members. A novel approach using the discrete element method (DEM) is proposed, where three-dimensional randomly generated distinct polyhedral blocks are used, representing concrete and one-dimensional truss elements are utilized, representing steel reinforcements. Thus, an explicit representation of reinforced concrete members is achieved, and the mechanical behavior of the system ...
Citation Formats
Y. Tavakkoli Osgouei, “Matrix-fracture transfer in non-isothermal conditions,” Thesis (Ph.D.) -- Graduate School of Natural and Applied Sciences. Petroleum and Natural Gas Engineering., Middle East Technical University, 2020.