Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Unsupervised building detection in complex urban environments from multispectral satellite imagery
Date
2012-01-01
Author
AYTEKİN, Orsan
Erener, Arzu
Ulusoy, İlkay
Duzgun, Sebnem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
118
views
0
downloads
Cite This
A generic algorithm is presented for automatic extraction of buildings and roads from complex urban environments in high-resolution satellite images where the extraction of both object types at the same time enhances the performance. The proposed approach exploits spectral properties in conjunction with spatial properties, both of which actually provide complementary information to each other. First, a high-resolution pansharpened colour image is obtained by merging the high-resolution panchromatic (PAN) and the low-resolution multispectral images yielding a colour image at the resolution of the PAN band. Natural and man-made regions are classified and segmented by the Normalized Difference Vegetation Index (NDVI). Shadow regions are detected by the chromaticity to intensity ratio in the YIQ colour space. After the classification of the vegetation and the shadow areas, the rest of the image consists of man-made areas only. The man-made areas are partitioned by mean shift segmentation where some resulting segments are irrelevant to buildings in terms of shape. These artefacts are eliminated in two steps: First, each segment is thinned using morphological operations and its length is compared to a threshold which is determined according to the empirical length of the buildings. As a result, long segments which most probably represent roads are masked out. Second, the erroneous thin artefacts which are classified by principal component analysis (PCA) are removed. In parallel to PCA, small artefacts are wiped out based on morphological processes as well. The resultant man-made mask image is overlaid on the ground-truth image, where the buildings are previously labelled, for the accuracy assessment of the methodology. The method is applied to Quickbird images (2.4 m multispectral R, G, B, near-infrared (NIR) bands and 0.6 m PAN band) of eight different urban regions, each of which includes different properties of surface objects. The images are extending from simple to complex urban area. The simple image type includes a regular urban area with low density and regular building pattern. The complex image type involves almost all kinds of challenges such as small and large buildings, regions with bare soil, vegetation areas, shadows and so on. Although the performance of the algorithm slightly changes for various urban complexity levels, it performs well for all types of urban areas.
Subject Keywords
Aerial images
,
Feature-extraction
,
Wavelet transform
,
Resolution
,
Classification
,
Segmentation
,
Fusion
,
Identification
,
System
,
Scenes
URI
https://hdl.handle.net/11511/46363
Journal
INTERNATIONAL JOURNAL OF REMOTE SENSING
DOI
https://doi.org/10.1080/01431161.2011.606852
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Unsupervised texture based image segmentation by simulated annealing using Markov random field and Potts models
Goktepe, M; Atalay, Mehmet Volkan; Yalabik, N; Yalabik, C (1998-01-01)
Unsupervised segmentation of images which are composed of various textures is investigated A coarse segmentation is achieved through a hierarchical self organizing map. This initial segmentation result is fed into a simulated annealing algorithm in which region and texture parameters are estimated using maximum likelihood technique. Region geometries are modeled as Potts model while textures are modeled as Markov random fields. Tests are performed an artificial textured images.
Unsupervised Electromagnetic Target Classification by Self-organizing Map Type Clustering
Katilmis, T. T.; Ekmekci, E.; Sayan, Gönül (2010-07-08)
In this study, design of a completely unsupervised electromagnetic target classifier will be described based on the use of Self-Organizing Map (SOM) type artificial neural network training and Wigner distribution (WD) based target feature extraction technique. The suggested classification method will be demonstrated for a target library of four dielectric spheres which have exactly the same size but slightly different permittivity values.
Automated building detection from satellite images by using shadow information as an object invariant
Yüksel, Barış; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2012)
Apart from classical pattern recognition techniques applied for automated building detection in satellite images, a robust building detection methodology is proposed, where self-supervision data can be automatically extracted from the image by using shadow and its direction as an invariant for building object. In this methodology; first the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generate...
Road extraction from high-resolution satellite images
Özkaya, Meral; Temizel, Alptekin; Department of Information Systems (2009)
Roads are significant objects of an infrastructure and the extraction of roads from aerial and satellite images are important for different applications such as automated map generation and change detection. Roads are also important to detect other structures such as buildings and urban areas. In this thesis, the road extraction approach is based on Active Contour Models for 1- meter resolution gray level images. Active Contour Models contains Snake Approach. During applications, the road structure was sepa...
Automatic building extraction from high resolution satellite images for map updating: A model based approach
San, D. Koc; TÜRKER, MUSTAFA (2007-10-12)
An approach was developed for automatically updating the buildings of an existing vector database from high resolution satellite images using spectral image classification, Digital Elevation Models (DEM) and the model-based extraction techniques. First, the areas that contain buildings are detected using spectral image classification and the normalized Digital Surface Model (nDSM). The classified output provides the shapes and the approximate locations of the buildings. However, those buildings that have si...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. AYTEKİN, A. Erener, İ. Ulusoy, and S. Duzgun, “Unsupervised building detection in complex urban environments from multispectral satellite imagery,”
INTERNATIONAL JOURNAL OF REMOTE SENSING
, pp. 2152–2177, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46363.