Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field

2008-03-01
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with one conducting and one insulating pair of opposite walls under an external magnetic field parallel to the conducting walls, is investigated. The MHD equations are coupled in terms of velocity and magnetic field and cannot be decoupled with conducting wall boundary conditions since then boundary conditions are coupled and involve an unknown function. The boundary element method (BEM) is applied here by using a fundamental solution which enables to treat the MHD equations in coupled form with the most general form of wall conductivities. Also, with this fundamental solution it is possible to obtain BEM solution for values of Hartmann number (M) up to 300 which was not available before. The equivelocity and induced magnetic field contours which show the well-known characteristics of MHD duct flow are presented for several values of M.
COMPUTATIONAL MECHANICS

Suggestions

BOUNDARY-ELEMENT METHOD SOLUTION OF MHD FLOW IN A RECTANGULAR DUCT
Tezer, Münevver (Wiley, 1994-05-30)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a sy...
Exact and FDM solutions of 1D MHD flow between parallel electrically conducting and slipping plates
Arslan, Sinem; Tezer, Münevver (Springer Science and Business Media LLC, 2019-08-01)
In this study, the steady, laminar, and fully developed magnetohydrodynamic (MHD) flow is considered in a long channel along with the z-axis under an external magnetic field which is perpendicular to the channel axis. The fluid velocity u and the induced magnetic field b depend on the plane coordinates x and y on the cross-section of the channel. When the lateral channel walls are extended to infinity, the problem turns out to be MHD flow between two parallel plates (Hartmann flow). Now, the variations of u...
Finite element method solution of electrically driven magnetohydrodynamic flow
Nesliturk, AI; Tezer, Münevver (Elsevier BV, 2006-08-01)
The magnetohydrodynamic (MHD) flow in a rectangular duct is investigated for the case when the flow is driven by the current produced by electrodes, placed one in each of the walls of the duct where the applied magnetic field is perpendicular, The flow is steady, laminar and the fluid is incompressible, viscous and electrically conducting. A stabilized finite element with the residual-free bubble (RFB) functions is used for solving the governing equations. The finite element method employing the RFB functio...
MHD flow in a rectangular duct with a perturbed boundary
Fendoglu, Hande; Bozkaya, Canan; Tezer, Münevver (Elsevier BV, 2019-01-15)
The unsteady magnetohydrodynamic (MHD) flow of a viscous, incompressible and electrically conducting fluid in a rectangular duct with a perturbed boundary, is investigated. A small boundary perturbation e is applied on the upper wall of the duct which is encountered in the visualization of the blood flow in constricted arteries. The MHD equations which are coupled in the velocity and the induced magnetic field are solved with no-slip velocity conditions and by taking the side walls as insulated and the Hart...
Finite element study of biomagnetic fluid flow in a symmetrically stenosed channel
Turk, O.; Tezer, Münevver; Bozkaya, Canan (Elsevier BV, 2014-03-15)
The two-dimensional unsteady, laminar flow of a viscous, Newtonian, incompressible and electrically conducting biofluid in a channel with a stenosis, under the influence of a spatially varying magnetic field, is considered. The mathematical modeling of the problem results in a coupled nonlinear system of equations and is given in stream function-vorticity-temperature formulation for the numerical treatment. These equations together with their appropriate boundary conditions are solved iteratively using the ...
Citation Formats
M. Tezer and C. Bozkaya, “Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field,” COMPUTATIONAL MECHANICS, pp. 769–775, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46587.