A comparative study of the electronic properties of aluminum nitride compounds

Mohammad, Rezek
Katırcıoğlu, Şenay
Electronic properties of aluminum nitride in wurtzite, zinc-blende, and rock-salt phases are investigated by a full potential-linearized augmented plane waves method based on density functional theory within standard local density approximation and its four improved versions. Local density approximation corrected by the generalized gradient functional of Perdew-Wang-Engel-Vosko is found to be more successful than the other generalized gradient functional approximations considered in this work for providing reasonable lattice constants, energy gaps, effective electron and hole masses, and optical features for AlN phases. Although local density approximation corrected by modified Becke-Johnson potential underestimates the static dielectric constants, it provides the largest energy gaps of AlN phases very close to the available experimental and theoretical ones reported by high-cost calculations in the literature. Hence, this approach is decided to be the most accurate scheme among other approximations of this work for electronic band structure calculations of aluminum nitride phases.


A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Evaluation of mechanical properties of Bi12SiO20 sillenite using first principles and nanoindentation
Isik, M.; Sürücü, Gökhan; Gencer, A.; Hasanlı, Nızamı (2021-08-01)
The mechanical and anisotropic elastic properties of Bi12SiO20 (BSO) were investigated using density functional theory (DFT) calculations and nanoindentation. The calculated and experimentally observed XRD patterns of the compound were reported and the crystal structure of the BSO was determined to be cubic with the lattice constant of a = 1.025 nm. The second-order elastic constants and related polycrystalline elastic moduli (e.g. shear modulus, Young's modulus, Poisson's ratio, linear compressibility and ...
A density functional theory study on the structural and electronic properties of PbxSbySez (x plus y plus z=2, 3) clusters
Pekoz, Rengin; Erkoç, Şakir (2018-01-30)
The structural and electronic properties of neutral ternary PbxSbySez clusters (x y + z = 2, 3) in their ground states have been explored by means of density functional theory calculations. The geometric structures and binding energies are systematically explored and for the most stable configurations of each cluster type vibrational frequencies, charges on atoms, energy difference between highest occupied and lowest unoccupied molecular orbitals, and the possible dissociations channels have been analyzed. ...
ÖZÜN, Savaş; Atalay, Mustafa Ümit (2016-01-01)
Flotation and adsorption characteristics of the most commonly used cationic and anionic collectors with high grade orthoclase were investigated through the electrokinetic potential measurement, microflotation, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies. According to the obtained results, orthoclase had high flotation recovery with amine and oleic acid based (OAB) collector at certain pH ranges no flotation response was observed with petroleum sulfonate at differ...
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Soyer, Sezen; Uzun, Alper; Senkan, Selim; Önal, Işık (2006-12-15)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relati...
Citation Formats
R. Mohammad and Ş. Katırcıoğlu, “A comparative study of the electronic properties of aluminum nitride compounds,” TURKISH JOURNAL OF PHYSICS, pp. 219–230, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46718.