Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A comparative study of the electronic properties of aluminum nitride compounds
Date
2016-01-01
Author
Mohammad, Rezek
Katırcıoğlu, Şenay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
267
views
0
downloads
Cite This
Electronic properties of aluminum nitride in wurtzite, zinc-blende, and rock-salt phases are investigated by a full potential-linearized augmented plane waves method based on density functional theory within standard local density approximation and its four improved versions. Local density approximation corrected by the generalized gradient functional of Perdew-Wang-Engel-Vosko is found to be more successful than the other generalized gradient functional approximations considered in this work for providing reasonable lattice constants, energy gaps, effective electron and hole masses, and optical features for AlN phases. Although local density approximation corrected by modified Becke-Johnson potential underestimates the static dielectric constants, it provides the largest energy gaps of AlN phases very close to the available experimental and theoretical ones reported by high-cost calculations in the literature. Hence, this approach is decided to be the most accurate scheme among other approximations of this work for electronic band structure calculations of aluminum nitride phases.
Subject Keywords
Aluminum nitride
,
Full potential-linearized augmented plane waves
,
Density functional theory
,
Electronic properties
URI
https://hdl.handle.net/11511/46718
Journal
TURKISH JOURNAL OF PHYSICS
DOI
https://doi.org/10.3906/fiz-1511-13
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
A van der Waals DFT study of chain length dependence of alkanethiol adsorption on Au(111): physisorption vs. chemisorption
Mete, Ersen; Yortanli, Merve; Danışman, Mehmet Fatih (2017-06-07)
The energetics and structures of physisorbed and chemisorbed alkanethiols on Au(111) have been systematically investigated up to 10 carbon atoms using van der Waals (vdW) corrected density functional theory (DFT) calculations. The role of chain length, tilting angle and coverage on the adsorption characteristics has been examined to elucidate the energetics and plausible transformation mechanisms between lying down and standing up phases. Coverage and size dependent chain-chain electronic interactions count...
Evaluation of mechanical properties of Bi12SiO20 sillenite using first principles and nanoindentation
Isik, M.; Sürücü, Gökhan; Gencer, A.; Hasanlı, Nızamı (2021-08-01)
The mechanical and anisotropic elastic properties of Bi12SiO20 (BSO) were investigated using density functional theory (DFT) calculations and nanoindentation. The calculated and experimentally observed XRD patterns of the compound were reported and the crystal structure of the BSO was determined to be cubic with the lattice constant of a = 1.025 nm. The second-order elastic constants and related polycrystalline elastic moduli (e.g. shear modulus, Young's modulus, Poisson's ratio, linear compressibility and ...
A density functional theory study on the structural and electronic properties of PbxSbySez (x plus y plus z=2, 3) clusters
Pekoz, Rengin; Erkoç, Şakir (2018-01-30)
The structural and electronic properties of neutral ternary PbxSbySez clusters (x y + z = 2, 3) in their ground states have been explored by means of density functional theory calculations. The geometric structures and binding energies are systematically explored and for the most stable configurations of each cluster type vibrational frequencies, charges on atoms, energy difference between highest occupied and lowest unoccupied molecular orbitals, and the possible dissociations channels have been analyzed. ...
A COMPARATIVE STUDY ON INTERACTIONS OF IONIC COLLECTORS WITH ORTHOCLASE
ÖZÜN, Savaş; Atalay, Mustafa Ümit (2016-01-01)
Flotation and adsorption characteristics of the most commonly used cationic and anionic collectors with high grade orthoclase were investigated through the electrokinetic potential measurement, microflotation, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies. According to the obtained results, orthoclase had high flotation recovery with amine and oleic acid based (OAB) collector at certain pH ranges no flotation response was observed with petroleum sulfonate at differ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Mohammad and Ş. Katırcıoğlu, “A comparative study of the electronic properties of aluminum nitride compounds,”
TURKISH JOURNAL OF PHYSICS
, pp. 219–230, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46718.