Optimal energy allocation policies for a high altitude flying wireless access point

Download
2017-04-01
Ceran, Elif Tugce
Erkilic, Tugce
Uysal, Elif
GİRİCİ, TOLGA
Leblebicioğlu, Mehmet Kemal
Inspired by recent industrial efforts towards high altitude flying wireless access points powered by renewable energy, an online resource allocation problem for a mobile access point travelling at high altitude is formulated. The access point allocates its resources (available energy) to maximise the total utility (reward) provided to a sequentially observed set of users demanding service. The problem is formulated as a 0/1 dynamic knapsack problem with incremental capacity over a finite time horizon, and the solution of which is quite open in the literature. We address the problem through deterministic and stochastic formulations followed by a model where the statistics of the underlying processes are not known and learned through rule-based and neural network approaches. For the deterministic problem, several online approximations including optimisation via genetic algorithm and rule-based approach are proposed based on an instantaneous threshold that can adapt to short-time-scale dynamics. For the stochastic model, after showing the optimality of a threshold-based solution on a dynamic programming formulation, an approximate threshold-based policy is obtained. The performances of proposed policies are compared with that of the optimal solution obtained through dynamic programming. Copyright (C) 2016 John Wiley & Sons, Ltd.
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES

Suggestions

Optimizing The Service Policy Of A Wireless Access Point On The Move With Renewable Energy
Ceran, Elif Tugce; Erkilic, Tugce; Uysal-Biyikoglu, Elif; Girici, Tolga; Leblebicioğlu, Mehmet Kemal (2014-01-01)
Inspired by recent industry efforts toward providing Internet access to areas of the world devoid of regular telecommunications infrastructure, an online resource allocation problem for a mobile access point (AP) is studied. While prudently managing its available energy, the AP allocates its resources to maximize the total utility (reward) provided to the users demanding service. The problem is formulated as a 0/1 dynamic knapsack problem with incremental capacity in a finite time horizon, the solution of w...
Sensitivity analysis for piezoelectric energy harvester and bluff body design toward underwater pipeline monitoring
Qureshi , Fassahat Ullah Qureshi; Muhtaroglu, Ali; Tuncay, Kağan (2017-01-01)
Monitoring of underwater pipelines through wireless sensor nodes (WSNs) is an important area of research especially for locations such as underground or underwater pipelines, where it is costly to replace batteries. In this study, a finite element sensitivity and comparative analysis for piezoelectric (PZT) energy harvester operating in a fluid flow is done to power underwater in-pipe WSNs. Two types of bluff bodies D and I-shaped are used for comparison. Finite element simulations results show that PZT ene...
Wireless Backhaul in 5G and Beyond: Issues, Challenges and Opportunities
Tezergil, Berke; Onur, Ertan (2022-1-01)
IEEEWith the introduction of new technologies such as Unmanned Aerial Vehicle (UAV), High Altitude Platform Station (HAPS), Millimeter Wave (mmWave) frequencies, Massive Multiple-Input Multiple-Output (mMIMO), and beamforming, wireless backhaul is expected to be an integral part of the 5G networks. While this concept is nothing new, it was shortcoming in terms of performance compared to the fiber backhauling. However, with these new technologies, fiber is no longer the foremost technology for backhauling. W...
Multimedia communication in wireless sensor networks
Gurses, E; Akan, OB (2005-07-01)
The technological advances in Micro ElectroMechanical Systems (MEMS) and wireless communications have enabled the realization of wireless sensor networks (WSN) comprised of large number of low-cost, low-power multifunctional sensor nodes. These tiny sensor nodes communicate in short distances and collaboratively work toward fulfilling the application specific objectives of WSN. However, realization of wide range of envisioned WSN applications necessitates effective communication protocols which can address ...
Average Throughput Performance of Myopic Policy in Energy Harvesting Wireless Sensor Networks
Gül, Ömer Melih; Demirekler, Mübeccel (MDPI AG, 2017-9-26)
This paper considers a single-hop wireless sensor network where a fusion center collects data from M energy harvesting wireless sensors. The harvested energy is stored losslessly in an infinite-capacity battery at each sensor. In each time slot, the fusion center schedules K sensors for data transmission over K orthogonal channels. The fusion center does not have direct knowledge on the battery states of sensors, or the statistics of their energy harvesting processes. The fusion center only has information ...
Citation Formats
E. T. Ceran, T. Erkilic, E. Uysal, T. GİRİCİ, and M. K. Leblebicioğlu, “Optimal energy allocation policies for a high altitude flying wireless access point,” TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46805.