Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Sustainable Debinding and Recovery of CO2-Soluble Binders
Date
2012-07-04
Author
Dilek Hacıhabiboğlu, Çerağ
Hong, Lei
Enick, Robert M.
Gulari, Esin
Manke, Charles W.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Metal and ceramic forming applications using conventional binders are associated with a number of environmental problems such as toxic emissions and carcinogenic wastes released from conventional binder removal processes. Here, we examine several materials as possible binder candidates for a sustainable technology wherein the binder can be recovered and recycled by supercritical carbon dioxide. The candidates include an acetylated sugar, beta-D-galactose pentaacetate, and two tert-butyl aromatics, 1,3,5-tri-tert-butylbenzene and 2,4,6-tri-tert-butylphenol, which have significantly high solubility in supercritical carbon dioxide. We have demonstrated high-pressure carbon dioxide debinding of sand molds, each bound with candidate binders, at moderate temperatures and pressures. Practical operating conditions are suggested from the complementary binder-carbon dioxide phase behavior studies. Compared to solvent debinding, these novel binders exhibit rapid dissolution into supercritical CO2 due to enhanced transport properties. With high supercritical CO2 debinding efficiency, these materials are promising for developing more sustainable material forming processes, where toxic emissions and hazardous wastes of conventional debinding techniques can be eliminated, and materials recycling and reuse can be achieved.
Subject Keywords
Separation science
,
Liquids
,
Dissolution
,
Solvents
,
Extraction
URI
https://hdl.handle.net/11511/47108
Journal
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
DOI
https://doi.org/10.1021/ie202608t
Collections
Department of Chemical Engineering, Article