Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multiple target localization & data association for frequency-only widely separated MIMO radar
Date
2014-02-01
Author
Kalkan, Yilmaz
Baykal, Buyurman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
The multiple target localization using only Doppler frequencies in Multiple-Input Multiple-Output (MIMO) radar is a problem of great interest. The Doppler frequencies include all relevant information about the location, velocity and direction of the targets. Hence, these frequencies can be used efficiently for data association and target localization. The MIMO configuration and the frequency diversity of the system enable us to easily determine the number of moving targets using only the Doppler frequencies. Then, the data association is achieved for the known number of targets by using the estimated target velocities, directions and positions which can be utilized together or separately for data association. Using these parameters, three data association methods are proposed, namely "Position & Velocity Based", "Direction Based" and "Position, Velocity & Direction Based" Data Associations. Moreover, when probability of detection is less than unity, data association can still be achieved with some modifications. Besides that, another algorithm, referred to as "Frequency Reduction & Association", is proposed to eliminate spurious frequencies when they appear in the spectrum. These are the first data association methods for Doppler-only systems and they can be used efficiently when Doppler frequencies are only available information in the MIMO radar context. After received frequencies are associated with the correct targets, multiple target localization can be performed using the associated Doppler frequencies.
Subject Keywords
Signal Processing
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/47626
Journal
DIGITAL SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.dsp.2013.09.015
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Tracker-aware adaptive detection: An efficient closed-form solution for the Neyman-Pearson case
Aslan, Murat Samil; Saranlı, Afşar; Baykal, Buyurman (Elsevier BV, 2010-09-01)
A promising line of research for radar systems attempts to optimize the detector thresholds so as to maximize the overall performance of a radar detector-tracker pair. In the present work, we attempt to move in a direction to fulfill this promise by considering a particular dynamic optimization scheme which relies on a non-simulation performance prediction (NSPP) methodology for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE). By using a suitable functional appr...
Extended Target Tracking Using Polynomials With Applications to Road-Map Estimation
Lundquist, Christian; Orguner, Umut; Gustafsson, Fredrik (Institute of Electrical and Electronics Engineers (IEEE), 2011-01-01)
This paper presents an extended target tracking framework which uses polynomials in order to model extended objects in the scene of interest from imagery sensor data. State-space models are proposed for the extended objects which enables the use of Kalman filters in tracking. Different methodologies of designing measurement equations are investigated. A general target tracking algorithm that utilizes a specific data association method for the extended targets is presented. The overall algorithm must always ...
An Automatically Mode-Matched MEMS Gyroscope With Wide and Tunable Bandwidth
Sonmezoglu, Soner; Alper, Said Emre; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-04-01)
This paper presents the architecture and experimental verification of the automatic mode-matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to achieve and maintain matched resonance mode frequencies. The system also allows adjusting the system bandwidth with the aid of the proportional-integral controller parameters of the sense-mode force-feedback controller, independently from the mechanical sensor bandwidth. This paper experimentally examines...
Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm
SEÇMEN, MUSTAFA; Sayan, Gönül (Institution of Engineering and Technology (IET), 2009-12-01)
This study introduces a novel aspect and polarisation invariant radar target classification method based on the use of multiple signal classification (MUSIC) algorithm for feature extraction. In the suggested method, for each candidate target at each designated reference aspect, feature matrices called 'MUSIC spectrum matrices (MSMs)' are constructed using the target's scattered data at different late-time intervals. An individual MSM corresponds to a map of a target's natural resonance-related power distri...
Conjugate directions based order recursive implementation of post-Doppler adaptive target detectors
Candan, Çağatay (Institution of Engineering and Technology (IET), 2012-08-01)
An implementation for the post-Doppler adaptive target detectors enabling an efficient change of the subspace dimension is described. The proposed implementation uses the order recursive structure of the conjugate directions method and does not present any additional computational burden on the processor. The implementation can be particularly useful for the adaptive detectors with an indeterminate number of auxiliary vectors for the clutter covariance matrix estimation. Through the proposed method, the sub...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Kalkan and B. Baykal, “Multiple target localization & data association for frequency-only widely separated MIMO radar,”
DIGITAL SIGNAL PROCESSING
, pp. 51–61, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47626.