Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An Extended Target CPHD Filter and a Gamma Gaussian Inverse Wishart Implementation
Download
index.pdf
Date
2013-06-01
Author
Lundquist, Christian
Granstrom, Karl
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
8
downloads
This paper presents a cardinalized probability hypothesis density (CPHD) filter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) filter for such targets has been derived by Mahler, and different implementations have been proposed recently. To achieve better estimation performance this work relaxes the Poisson assumptions of the extended target PHD filter in target and measurement numbers. A gamma Gaussian inverse Wishart mixture implementation, which is capable of estimating the target extents and measurement rates as well as the kinematic state of the target, is proposed, and it is compared to its PHD counterpart in a simulation study. The results clearly show that the CPHD filter has a more robust cardinality estimate leading to smaller OSPA errors, which confirms that the extended target CPHD filter inherits the properties of its point target counterpart.
Subject Keywords
Signal Processing
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/47637
Journal
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
DOI
https://doi.org/10.1109/jstsp.2013.2245632
Collections
Department of Electrical and Electronics Engineering, Article