Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The multi-resource agent bottleneck generalised assignment problem
Date
2012-01-01
Author
Karsu, Ozlem
Azizoğlu, Meral
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
In this study, we consider the multi resource agent bottleneck generalised assignment problem. Our aim is to minimise the maximum load over all agents. We take our motivation from an assignment problem faced in heating, ventilating and air conditioning sector. We study the linear programming (LP) relaxation of the problem. We use the optimal LP relaxation solutions in our branch and bound algorithm while defining bounding and branching schemes. We find that our branch and bound algorithm returns optimal solutions to the problems with up to 60 jobs when the number of agents is 5, and up to 30 jobs when the number of agents is 10, in less than 20 minutes. To find approximate solutions, we define a tabu search algorithm and alpha approximation algorithm. Our computational results have revealed that both algorithms can find high quality solutions to large sized instances very quickly. To the best of our knowledge our study is the first reported attempt to solve the problem. We hope our study fills an important gap in the literature.
Subject Keywords
Management Science and Operations Research
,
Strategy and Management
,
Industrial and Manufacturing Engineering
URI
https://hdl.handle.net/11511/47683
Journal
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
DOI
https://doi.org/10.1080/00207543.2010.538745
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
A Lagrangean relaxation based approach for the capacity allocation problem in flexible manufacturing systems
ÖZPEYNİRCİ, SELİN; Azizoğlu, Meral (Informa UK Limited, 2010-05-01)
This study considers the operation assignment and capacity allocation problem in flexible manufacturing systems. A set of operations is selected to be processed and assigned to the machines together with their required tools. The purchase or usage of the required tools incurs a cost. The machines have scarce time and tool magazine capacities. The objective is to maximize the total weight of the assigned operations minus the total tooling costs. We use Lagrangean relaxation approach to obtain upper and lower...
A flexible flowshop problem with total flow time minimization
Azizoğlu, Meral; Kondakci, S (Elsevier BV, 2001-08-01)
In this study, we consider total flow time problem in a flexible flowshop environment. We develop a branch and bound algorithm to find the optimal schedule. The efficiency of the algorithm is enhanced by upper and lower bounds and a dominance criterion. Computational experience reveals that the algorithm solves moderate sized problems in reasonable solution times.
A resource investment problem with time/resource trade-offs
Colak, Erdem; Azizoğlu, Meral (Informa UK Limited, 2014-05-01)
In this study, we consider a Resource Investment Problem with time/resource trade-offs in project networks. We assume that there is a single renewable resource and the processing requirement of an activity can be reduced by investing extra resources. Our aim is to minimize the maximum resource usage, hence, the total amount invested for the single resource, while meeting the pre-specified deadline. We formulate the problem as a mixed integer linear model and find optimal solutions for small-sized problem in...
A Lagrangean relaxation approach for the mixed-model flow line sequencing problem
Eliiyi, Deniz Tuersel; Oezlen, Melih (Elsevier BV, 2008-03-01)
In this study, a mixed-model flow line sequencing problem is considered. A mixed-model flow line is a special case of production line where products are transported on a conveyor belt, and different models of the same product are intermixed on the same line. We have focused on product-fixed, rate-synchronous lines with variable launching. Our objective function is minimizing makespan. A heuristic algorithm based on Lagrangean relaxation is developed for the problem, and tested in terms of solution quality a...
A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem
Karasakal, Esra (Elsevier BV, 2017-12-01)
In this paper, multiple criteria sorting methods based on data envelopment analysis (DEA) are developed to evaluate research and development (R&D) projects. The weight intervals of the criteria are obtained from Interval Analytic Hierarchy Process and employed as the assurance region constraints of models. Based on data envelopment analysis, two threshold estimation models, and five assignment models are developed for sorting. In addition to sorting, these models also provide ranking of the projects. The de...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Karsu and M. Azizoğlu, “The multi-resource agent bottleneck generalised assignment problem,”
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
, pp. 309–324, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47683.