Finite-Horizon Energy-Efficient Scheduling With Energy Harvesting Transmitters Over Fading Channels

Uysal, Elif
Koksal, Can Emre
In this paper, energy-efficient transmission schemes achieving maximal throughput over a finite time interval are studied in a problem setting, including energy harvests, data arrivals, and channel variation. The goal is to express the offline optimal policy in a way that facilitates a good online solution. We express any throughput maximizing energy-efficient offline schedule (EE-TM-OFF) explicitly in terms of water levels. This allows per-slot real-time evaluation of transmit power and rate decisions, using estimates of the associated offline water levels. To compute the online power level, we construct a stochastic dynamic program that incorporates the offline optimal solution as a stochastic process. We introduce the immediate fill measure, which provides a lower bound on the efficiency of any online policy with respect to the corresponding optimal offline solution. The online algorithms obtained this way exhibit performance close to the offline optimal, not only in the long run but also in short problem horizons, deeming them suitable for practical implementations.


Finite Horizon Online Packet Scheduling with Energy and Delay Constraints
Bacınoğlu, Baran Tan; Uysal, Elif (2013-07-05)
A finite horizon optimal packet scheduling problem with data and energy causality constraints is posed. The slotted structure of the problem makes discrete time stochastic dynamic programming suitable for obtaining its optimal solution. This structure also enables an offline optimal solution that facilitates an online scheduling heuristic. The online heuristic, which does not require prior knowledge of data and energy arrival statistics, is observed (via simulations) to perform closely to the online optimal...
Optimized Electromagnetic Harvester with a Non-Magnetic Inertial Mass
Ulusan, Hasan; Yasar, Oguz; Zorlu, Ozge; Külah, Haluk (2015-09-09)
This paper presents an optimization study to decrease the operation frequency and increase the output power of a miniature electromagnetic (EM) energy harvester, by incorporating a non-magnetic inertial mass together with the moving magnet. The harvester coil position has been optimized through FEM, and validated through tests. Experimental studies on the inertial mass showed that increasing the magnet size further increases the resonance frequency due to the increased magnetic forces. Conversely, using a n...
Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates
BACINOĞLU, BARAN TAN; Uysal, Elif (2014-06-01)
As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, ...
Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents
Balouji, Ebrahim; SALOR DURNA, ÖZGÜL; Ermiş, Muammer (2017-10-01)
In this research work, a multiple synchronous reference frame (MSRF) based analysis method used together with exponential smoothing (ES) to accurately obtain the time-varying harmonics and interharmonics of electric arc furnace (EAF) currents, is proposed. The proposed method has been implemented on NVIDIA Geforce GTX 960 graphics card for the parallel processing of all harmonics and interharmonics so that real-time processing of the EAF currents obtained from a measurement point of the electricity transmis...
Joint frequency offset and channel estimation
Avan, Muhammet; Candan, Çağatay; Department of Electrical and Electronics Engineering (2008)
In this thesis study, joint frequency offset and channel estimation methods for single-input single-output (SISO) systems are examined. The performance of maximum likelihood estimate of the parameters are studied for different training sequences. Conventionally training sequences are designed solely for the channel estimation purpose. We present a numerical comparison of different training sequences for the joint estimation problem. The performance comparisons are made in terms of mean square estimation err...
Citation Formats
B. T. BACINOĞLU, E. Uysal, and C. E. Koksal, “Finite-Horizon Energy-Efficient Scheduling With Energy Harvesting Transmitters Over Fading Channels,” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, pp. 6105–6118, 2017, Accessed: 00, 2020. [Online]. Available: