Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In praise of laziness: A lazy strategy for web information extraction
Download
index.pdf
Date
2012-04-27
Author
Ozcan, Rifat
Altıngövde, İsmail Sengör
Ulusoy, Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
159
views
55
downloads
Cite This
A large number of Web information extraction algorithms are based on machine learning techniques. For such extraction algorithms, we propose employing a lazy learning strategy to build a specialized model for each test instance to improve the extraction accuracy and avoid the disadvantages of constructing a single general model.
Subject Keywords
Information extraction
,
Test instance
,
Machine learning technique
,
Training instance
,
Extraction rule
URI
https://hdl.handle.net/11511/48316
DOI
https://doi.org/10.1007/978-3-642-28997-2_65
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
On numerical optimization theory of infinite kernel learning
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2010-10-01)
In Machine Learning algorithms, one of the crucial issues is the representation of the data. As the given data source become heterogeneous and the data are large-scale, multiple kernel methods help to classify "nonlinear data". Nevertheless, the finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel method of "infinite" kernel combinations is proposed with the help of infinite and semi-infinite programming regarding all elements in kernel space. Look...
MODELLING OF KERNEL MACHINES BY INFINITE AND SEMI-INFINITE PROGRAMMING
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2009-06-03)
In Machine Learning (ML) algorithms, one of the crucial issues is the representation of the data. As the data become heterogeneous and large-scale, single kernel methods become insufficient to classify nonlinear data. The finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, we propose a novel method of "infinite" kernel combinations for learning problems with the help of infinite and semi-infinite programming regarding all elements in kernel space. Looking...
Multiobjective evolutionary feature subset selection algorithm for binary classification
Deniz Kızılöz, Firdevsi Ayça; Coşar, Ahmet; Dökeroğlu, Tansel; Department of Computer Engineering (2016)
This thesis investigates the performance of multiobjective feature subset selection (FSS) algorithms combined with the state-of-the-art machine learning techniques for binary classification problem. Recent studies try to improve the accuracy of classification by including all of the features in the dataset, neglecting to determine the best performing subset of features. However, for some problems, the number of features may reach thousands, which will cause too much computation power to be consumed during t...
Machine Learning over Encrypted Data With Fully Homomorphic Encyption
Kahya, Ayşegül; Cenk, Murat; Department of Cryptography (2022-8-26)
When machine learning algorithms train on a large data set, the result will be more realistic. Big data, distribution of big data, and the study of learning algorithms on distributed data are popular research topics of today. Encryption is a basic need, especially when storing data with a high degree of confidentiality, such as medical data. Classical encryption methods cannot meet this need because when texts encrypted with classical encryption methods are distributed, and the distributed data set is decry...
Mesh Learning for Object Classification using fMRI Measurements
Ekmekci, Ömer; Ozay, Mete; Oztekin, Ilke; GİLLAM, İLKE; Oztekin, Uygar (2013-09-18)
Machine learning algorithms have been widely used as reliable methods for modeling and classifying cognitive processes using functional Magnetic Resonance Imaging (fMRI) data. In this study, we aim to classify fMRI measurements recorded during an object recognition experiment. Previous studies focus on Multi Voxel Pattern Analysis (MVPA) which feeds a set of active voxels in a concatenated vector form to a machine learning algorithm to train and classify the cognitive processes. In most of the MVPA methods,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Ozcan, İ. S. Altıngövde, and Ö. Ulusoy, “In praise of laziness: A lazy strategy for web information extraction,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48316.