Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Sulfate resistance of plain and blended cements exposed to wetting-drying and heating-cooling environments
Date
2007-08-01
Author
Sahmaran, M.
Erdem, T. K.
Yaman, İsmail Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Exposure conditions significantly affect the resistance of cements to sulfate attack. This article investigates the sulfate resistance of ordinary portland cement (OPC), sulfate resistant portland cement (SRPC), and blended cements with different proportions of natural pozzolan and Class F fly ash when subjected to different exposure regimes. Plain and blended cement mortar specimens were stored under three different conditions: (i) continuous curing in lime-saturated water, (ii) continuous exposure to 5% Na2SO4 solution at room temperature, and (iii) cyclic exposure to 5% Na2SO4 solution at room temperature in which the cycles consisted of wetting-drying and heating-cooling. The sulfate resistance of cements was evaluated by measuring the reduction in compressive strength and length change of mortar specimens up to one year of exposure. This study revealed that the performance of blended cements under sodium sulfate solution at room temperature was better than that of SRPC with a 3.6%) C(3)A content when the length change was considered. However, for the structures exposed to sulfate attack and cycles of wetting-drying and heating-cooling, SRPC was found to perform better than blended cements when the compressive strength losses were considered.
Subject Keywords
General Materials Science
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/48371
Journal
CONSTRUCTION AND BUILDING MATERIALS
DOI
https://doi.org/10.1016/j.conbuildmat.2006.05.012
Collections
Department of Civil Engineering, Article