Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Electrostatic Stabilization of Alumina Nanopowder Suspensions
Date
2014-03-01
Author
Çınar, Simge
AKINC, MÜFİT
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Electrostatic stabilization has an impact on a broad range of applications. Previous research has shown that concentrated alumina nanopowder suspensions can be stabilized at specific ranges of ionic strength and pH. This study investigated the stability of alumina nanopowder suspensions in terms of viscosity measurements as a function of different electrolyte concentration and suspension pH. Using alumina nanopowders with an average particle size of about 50 nm, stable suspensions were obtained with 0.020 ≤ [NaCl] ≤ 0.040 M or in the range 4 ≤ pH ≤ 7. The observed suspension stability was investigated by zeta potential measurements and explained with the DLVO theory. The effective volume fraction of solids brought about by bound water (or swelling), surface charge, and the compression of the electrical double layer were three plausible control mechanisms for the rheological behavior and electrostatic stabilization of alumina nanopowder suspensions with high solids content.
Subject Keywords
General Materials Science
URI
https://hdl.handle.net/11511/39028
Journal
Science of Advanced Materials
DOI
https://doi.org/10.1166/sam.2014.1773
Collections
Department of Metallurgical and Materials Engineering, Article