Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrical conductivity Imaging via contactless measurements: An experimental study
Date
2003-05-01
Author
KARBEYAZ, BAŞAK ÜLKER
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
A data-acquisition system has been developed to image electrical conductivity of biological tissues via contactless measurements. This system uses magnetic excitation to induce currents inside the body and measures the resulting magnetic fields. The data-acquisition system is constructed using a PC-controlled lock-in amplifier instrument. A magnetically coupled differential coil is used to scan conducting phantoms by a computer controlled scanning system. A 10000-turn differential coil system with circular receiver coils of radii 15 mm is used as a magnetic sensor. The transmitter coil is a 100-turn circular coil of radius 15 mm and is driven by a sinusoidal current of 200 mA (peak). The linearity of the system is 7.2% full scale. The sensitivity of the system to conducting tubes when the sensor-body distance is 0.3 cm is 21.47 mV/(S/m). It is observed that it is possible to detect a conducting tube of average conductivity (0.2 S/m) when the body is 6 cm from the sensor. The system has a signal-to-noise ratio of 34 dB and thermal stability of 33.4 mV/degreesC. Conductivity images are reconstructed using the steepest-descent algorithm. Images obtained from isolated conducting tubes show that it is possible to distinguish two tubes separated 17 mm from each other. The images of different phantoms are found to be a good representation of the actual conductivity distribution. The field profiles obtained by scanning a biological tissue show the potential of this methodology for clinical applications.
Subject Keywords
Electrical and Electronic Engineering
,
Radiological and Ultrasound Technology
,
Software
,
Computer Science Applications
URI
https://hdl.handle.net/11511/48418
Journal
IEEE TRANSACTIONS ON MEDICAL IMAGING
DOI
https://doi.org/10.1109/tmi.2003.812271
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Electrical conductivity imaging via contactless measurements
Gençer, Nevzat Güneri (Institute of Electrical and Electronics Engineers (IEEE), 1999-07-01)
A new imaging modality is introduced to image electrical conductivity of biological tissues via contactless measurements. This modality uses magnetic excitation to induce currents inside the body and measures the magnetic fields of the induced currents. In this study, the mathematical basis of the methodology is analyzed and numerical models are developed to simulate the imaging system. The induced currents are expressed using the (A) over right arrow-phi formulation of the electric field where (A) over rig...
Direct Reconstruction of Pharmacokinetic-Rate Images of Optical Fluorophores From NIR Measurements
Alacam, Burak; Yazici, Birsen (Institute of Electrical and Electronics Engineers (IEEE), 2009-09-01)
In this paper, we present a new method to form pharmacokinetic-rate images of optical fluorophores directly from near infra-red (NIR) boundary measurements. We first derive a mapping from spatially resolved pharmacokinetic rates to NIR boundary measurements by combining compartmental modeling with a diffusion based NIR photon propagation model. We express this mapping as a state-space equation. Next, we introduce a spatio-temporal prior model for the pharmacokinetic-rate images and combine it with the state...
Implementation of a data acquisition system for contactless conductivity imaging
ULKER, B; Gençer, Nevzat Güneri (2001-10-28)
A data acquisition system is realized to image electrical conductivity of biological tissues via contactless measurements. This system uses magnetic excitation to induce currents inside the body and measures the magnetic fields of the induced currents. A magnetically coupled differential coil system is scanned on the conductive object by a computer controlled scanning system. A data acquisition system is constructed using a PC controlled lock-in amplifier. 1.64V secondary voltage difference can be measured ...
Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-11-07)
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging...
Phonon Mean Free Path in Few Layer Graphene, Hexagonal Boron Nitride, and Composite Bilayer h-BN/Graphene
Gholivand, Hamed; Donmezer, Nazli (Institute of Electrical and Electronics Engineers (IEEE), 2017-09-01)
In this study, ab-initio calculations were performed to obtain the phonon dispersions of seven different structures: single layer graphene, bilayer graphene, graphite, single layer h-BN, bilayer h-BN, bulk h-BN, and finally composite bilayer h-BN/graphene. Using these dispersions specific heat, group velocity, and single mode relaxation times of phonons were obtained to calculate their thermal conductivities, and mean free paths at room temperature. Calculated variables were used to understand the effects o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ü. KARBEYAZ and N. G. Gençer, “Electrical conductivity Imaging via contactless measurements: An experimental study,”
IEEE TRANSACTIONS ON MEDICAL IMAGING
, pp. 627–635, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48418.