On affine variety codes from the Klein quartic

2019-03-01
Geil, Olav
Özbudak, Ferruh
We study a family of primary affine variety codes defined from the Klein quartic. The duals of these codes have previously been treated in Kolluru et al., (Appl. Algebra Engrg. Comm. Comput. 10(6):433-464, 2000, Ex. 3.2). Among the codes that we construct almost all have parameters as good as the best known codes according to Grassl (2007) and in the remaining few cases the parameters are almost as good. To establish the code parameters we apply the footprint bound (Geil and HOholdt, IEEE Trans. Inform. Theory 46(2), 635-641, 2000 and HOholdt 1998) from Grobner basis theory and for this purpose we develop a new method where we inspired by Buchberger's algorithm perform a series of symbolic computations.
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES

Suggestions

Generalized nonbinary sequences with perfect autocorrelation, flexible alphabets and new periods
BOZTAŞ, Serdar; Özbudak, Ferruh; TEKİN, Eda (Springer Science and Business Media LLC, 2018-05-01)
We extend the parameters and generalize existing constructions of perfect autocorrelation sequences over complex alphabets. In particular, we address the PSK+ constellation (Boztas and Udaya 2010) and present an extended number theoretic criterion which is sufficient for the existence of the new sequences with perfect autocorrelation. These sequences are shown to exist for nonprime alphabets and more general lengths in comparison to existing designs. The new perfect autocorrelation sequences provide novel a...
A concatenated construction of linear complementary pair of codes
GÜNERİ, CEM; Özbudak, Ferruh; Sacikara, Elif (Springer Science and Business Media LLC, 2019-09-01)
A concatenated construction for linear complementary dual codes was given by Carlet et al. using the so-called isometry inner codes. Here, we obtain a concatenated construction to the more general family, linear complementary pair of codes. Moreover, we extend the dual code description of Chen et al. for concatenated codes to duals of generalized concatenated codes. This allows us to use generalized concatenated codes for the construction of linear complementary pair of codes.
Results on symmetric S-boxes constructed by concatenation of RSSBs
KAVUT, SELÇUK; Baloglu, Sevdenur (Springer Science and Business Media LLC, 2019-07-01)
In this paper, we first present an efficient exhaustive search algorithm to enumerate 6 x 6 bijective S-boxes with the best-known nonlinearity 24 in a class of S-boxes that are symmetric under the permutation (x) = (x(0), x(2), x(3), x(4), x(5), x(1)), where x = (x(0), x1,...,x5)?26. Since any S-box S:?26?26 in this class has the property that S((x)) = (S(x)) for every x, it can be considered as a construction obtained by the concatenation of 5 x 5 rotation-symmetric S-boxes (RSSBs). The size of the search ...
Strongly regular graphs arising from non-weakly regular bent functions
Özbudak, Ferruh (Springer Science and Business Media LLC, 2019-11-01)
In this paper, we study two special subsets of a finite field of odd characteristics associated with non-weakly regular bent functions. We show that those subsets associated to non-weakly regular even bent functions in the GMMF class (see cesmelioglu et al. Finite Fields Appl. 24, 105-117 2013) are never partial difference sets (PDSs), and are PDSs if and only if they are trivial subsets. Moreover, we analyze the two known sporadic examples of non-weakly regular ternary bent functions given in Helleseth and...
Almost p-ary sequences
Ozden, Busra; Yayla, Oğuz (Springer Science and Business Media LLC, 2020-11-01)
In this paper we study almost p-ary sequences and their autocorrelation coefficients. We first study the number l of distinct out-of-phase autocorrelation coefficients for an almost p-ary sequence of period n + s with s consecutive zero-symbols. We prove an upper bound and a lower bound on l. It is shown that l can not be less than min{s,p,n}. In particular, it is shown that a nearly perfect sequence with at least two consecutive zero symbols does not exist. Next we define a new difference set, partial dire...
Citation Formats
O. Geil and F. Özbudak, “On affine variety codes from the Klein quartic,” CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, pp. 237–257, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48660.