Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On Linear Complementary Pairs of Codes
Date
2018-10-01
Author
CARLET, Claude
Guneri, Cem
Özbudak, Ferruh
Ozkaya, Buket
SOLE, Patrick
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
We study linear complementary pairs (LCP) of codes (C, D), where both codes belong to the same algebraic code family. We especially investigate constacyclic and quasicyclic LCP of codes. We obtain characterizations for LCP of constacyclic codes and LCP of quasi-cyclic codes. Our result for the constacyclic complementary pairs extends the characterization of linear complementary dual (LCD) cyclic codes given by Yang and Massey. We observe that when C and I) are complementary and constacyclic, the codes C and D-perpendicular to are equivalent to each other. Hence, the security parameter min(d(C), d(D-perpendicular to)) for LCP of codes is simply determined by one of the codes in this case. The same holds for a special class of quasi-cyclic codes, namely 2D cyclic codes, but not in general for all quasi-cyclic codes, since we have examples of LCP of double circulant codes not satisfying this conclusion for the security parameter. We present examples of binary LCP of quasi-cyclic codes and obtain several codes with better parameters than known binary LCD codes. Finally, a linear programming hound is obtained for binary LCP of codes and a table of values from this bound is presented in the case d(C) = d(D-perpendicular to). This extends the linear programming bound for LCD codes.
Subject Keywords
Library and Information Sciences
,
Information Systems
,
Computer Science Applications
URI
https://hdl.handle.net/11511/48911
Journal
IEEE TRANSACTIONS ON INFORMATION THEORY
DOI
https://doi.org/10.1109/tit.2018.2796125
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Cyclic codes and reducible additive equations
Guneri, Cem; Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2007-02-01)
We prove a Weil-Serre type bound on the number of solutions of a class of reducible additive equations over finite fields. Using the trace representation of cyclic codes, this enables us to write a general estimate for the weights of cyclic codes. We extend Woffmann's weight bound to a larger classes of cyclic codes. In particular, our result is applicable to any cyclic code over F-p and F-p2, where p is an arbitrary prime. Examples indicate that our bound performs very well against the Bose-Chaudhuri-Hocqu...
Constructing linear unequal error protection codes from algebraic curves
Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2003-06-01)
We show that the concept of "generalized algebraic geometry codes" which was recently introduced by Xing, Niederreiter, and Lam gives a natural framework for constructing linear unequal error protection codes.
An improvement on the bounds of Weil exponential sums over Gallois rings with some applications
Ling, S; Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2004-10-01)
We present an upper bound for Weil-type exponential sums over Galois rings of characteristic p(2) which improves on the analog of the Weil-Carlitz-Uchiyama bound for Galois rings obtained by Kumar, Helleseth, and Calderbank. A more refined bound, expressed in terms of genera of function fields, and an analog of McEliece's theorem on the divisibility of the homogeneous weights of codewords in trace codes over Z(p)2, are also derived. These results lead to an improvement on the estimation of the minimum dista...
Weil-Serre Type Bounds for Cyclic Codes
GÜNERİ, CEM; Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
We give a new method in order to obtain Weil-Serre type hounds on the minimum distance of arbitrary cyclic codes over F(pe) of length coprime to p, where e >= 1 is an arbitrary integer. In an earlier paper we obtained Weil-Serre type bounds for such codes only when e = 1 or e = 2 using lengthy explicit factorizations, which seems hopeless to generalize. The new method avoids such explicit factorizations and it produces an effective alternative. Using our method we obtain Weil-Serre type bounds in various ca...
Constructions and bounds on linear error-block codes
LİNG, San; Özbudak, Ferruh (Springer Science and Business Media LLC, 2007-12-01)
We obtain new bounds on the parameters and we give new constructions of linear error-block codes. We obtain a Gilbert-Varshamov type construction. Using our bounds and constructions we obtain some infinite families of optimal linear error-block codes over F-2. We also study the asymptotic of linear error-block codes. We define the real valued function alpha (q,m,a) (delta), which is an analog of the important real valued function alpha (q) (delta) in the asymptotic theory of classical linear error-correctin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. CARLET, C. Guneri, F. Özbudak, B. Ozkaya, and P. SOLE, “On Linear Complementary Pairs of Codes,”
IEEE TRANSACTIONS ON INFORMATION THEORY
, pp. 6583–6589, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48911.