Convexity constrained efficient superpixel and supervoxel extraction

2015-04-01
Tasli, H. Emrah
Çiğla, Cevahir
Alatan, Abdullah Aydın
This paper presents an efficient superpixel (SP) and supervoxel (SV) extraction method that aims improvements over the state-of-the-art in terms of both accuracy and computational complexity. Segmentation performance is improved through convexity constrained distance utilization, whereas computational efficiency is achieved by replacing complete region processing by a boundary adaptation technique. Starting from the uniformly distributed, rectangular (cubical) equal size (volume) superpixels (supervoxels), region boundaries are iteratively adapted towards object edges. Adaptation is performed by assigning the boundary pixels to the most similar neighboring SPs (SVs). At each iteration, SP (SV) regions are updated; hence, progressively converging to compact pixel groups. Detailed experimental comparisons against the state-of-the-art competing methods validate the performance of the proposed technique considering both accuracy and speed.
SIGNAL PROCESSING-IMAGE COMMUNICATION

Suggestions

Convergence performance of the approximate factorization methods with multi-block implicit boundary conditions at hypersonic speeds
Koca, Melikşah; Eyi, Sinan; Department of Aerospace Engineering (2022-9)
This thesis study presents convergence characteristics of the implicit approximate factorization methods at hypersonic flow conditions and with 2-dimensional and 3-dimensional geometries. The efficiency of the implicit boundary conditions at block interfaces for the multi-block grids is investigated for different approximate factorization methods. Standard Alternating Direction Implicit (ADI) method, Diagonal Dominant Alternating Direction Implicit method (DDADI) with and without Huang’s sub-iteration corre...
Image segmentation by fusion of low level and domain specific information via Markov Random Fields
Karadag, Ozge Oztimur; Yarman Vural, Fatoş Tunay (2014-09-01)
We propose a new segmentation method by fusing a set of top-down and bottom-up segmentation maps under the Markov Random Fields (MRF) framework. The bottom-up segmentation maps are obtained by varying the parameters of an unsupervised segmentation method, such as Mean Shift. The top-down segmentation maps are constructed from some priori information, called domain specific information (DSI), received from a domain expert in the form of general properties about the image dataset. The properties are then used...
Cooperative terrain based navigation and coverage identification using consensus
Kasebzadeh, Parinaz; Fritsche, Carsten; Özkan, Emre; Gunnarsson, Fredrik; Gustafsson, Fredrik ( Institute of Electrical and Electronics Engineers Inc.; 2015-07-06)
This paper presents a distributed online method for joint state and parameter estimation in a Jump Markov NonLinear System based on a distributed recursive Expectation Maximization algorithm. State inference is enabled via the use of Rao-Blackwellized Particle Filter and, for the parameter estimation, the E-step is performed independently at each sensor with the calculation of local sufficient statistics. An average consensus algorithm is used to diffuse local sufficient statistics to neighbors and approxim...
Optimising a nonlinear utility function in multi-objective integer programming
Ozlen, Melih; Azizoğlu, Meral; Burton, Benjamin A. (2013-05-01)
In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective i...
Image segmentation with unified region and boundary characteristics within recursive shortest spanning tree
Esen, E.; Alp, Y. K. (2007-06-13)
The lack of boundary information in region based image segmentation algorithms resulted in many hybrid methods that integrate the complementary information sources of region and boundary, in order to increase the segmentation performance. In compliance with this trend, we propose a novel method to unify the region and boundary characteristics within the canonical Recursive Shortest Spanning Tree algorithm. The main idea is to incorporate the boundary information in the distance metric of RSST with minor cha...
Citation Formats
H. E. Tasli, C. Çiğla, and A. A. Alatan, “Convexity constrained efficient superpixel and supervoxel extraction,” SIGNAL PROCESSING-IMAGE COMMUNICATION, pp. 71–85, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48983.