Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The effect of PBC on the simulation of nanotubes
Date
2000-05-01
Author
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
0
downloads
Cite This
The effect of the periodic boundary condition (PBC) on the structure and energetics of nanotubes has been investigated by performing molecular-dynamics computer simulation. Calculations have been realized by using an empirical many-body potential energy function for carbon. A single-wall carbon nanotube has been considered in the simulations. It has been found that the periodic boundary condition has no effect at low temperature (1 K), however, it plays an important role even at intermediate temperature (300 K).
Subject Keywords
Carbon nanotube
,
Empirical potential
,
Periodic boundary condition
,
Molecular-dynamics
URI
https://hdl.handle.net/11511/50445
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
DOI
https://doi.org/10.1142/s0129183100000456
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Effect of chirality on the stability of carbon nanotubes : Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2001-07-01)
The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.
Structural stability of carbon nanocapsules: Molecular-dynamics simulations
Malcıoğlu, Osman Barış; Yilmaz, A; Erkoc, S (2003-09-12)
Structural stability of empty and endohedrally doped carbon nanocapsules have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that empty carbon nanocapsules are relatively more stable with respect to endohedrally doped ones against heat treatment.
Stability of carbon nanotori
Yazgan, E; Tasci, E; Malcıoğlu, Osman Barış; Erkoç, Şakir (2003-09-12)
The structural stability of carbon nanotori have been investigated by performing molecular--dynamics simulations. The systems considered are C-170, C-360, C-520, and C-750 tori, which have been constructed using an algorithm developed in our laboratory based on Fonseca's idea. Calculations have been realized by using an empirical many-body potential energy function for carbon.
Molecular-dynamics simulation of radiation damage on copper clusters
Erkoç, Şakir (2000-07-01)
The effect of radiation damage on copper clusters has been investigated by performing molecular-dynamics simulation using empirical potential energy function for interaction between copper atoms. The external radiation is modeled by giving extra kinetic energy in the range of 5- 50 eV to initially chosen atom in the cluster. It has been found that the atom having extra kinetic energy dissociates independently from the amount of given energy in the studied range.
Simulation of carbon nanotube junction formations
Tasci, E; Malcıoğlu, Osman Barış; Erkoc, S (2003-09-12)
In this work we have examined the possible formation of a junction between two identical C(10,0) carbon nanotubes. One of the tubes was rotated 90 degrees with respect to the other. Simulation have been performed by means of a molecular-dynamics technique at 1K. For this purpose, we have introduced two stiff layers of graphite positioned above and below the nanotubes. By moving these layers we have created an effective force pushing the tubes closer to each other. In this simulation we have used a semi-empi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç, “The effect of PBC on the simulation of nanotubes,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
, pp. 547–551, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/50445.