Distributed restoration in optical networks using feed-forward neural networks

Karpat, Demeter Gokisik
Bilgen, Semih
A new method is proposed for determining protection paths in an optical network where users have different characteristics in terms of reliability needs and security restrictions. Survivability is achieved by distributed mesh protection. Over the preplanned primary and backup capacity, optimal routing and wavelength assignment is carried out. In case of a network failure, protection routes and optimum flow values on these protection routes are extracted from a previously trained feed-forward neural network which is distributed over the optical data communications network.


Machine learning algorithms for accurate flow-based network traffic classification: Evaluation and comparison
Soysal, Murat; Schmidt, Şenan Ece (Elsevier BV, 2010-06-01)
The task of network management and monitoring relies on an accurate characterization of network traffic generated by different applications and network protocols. We employ three supervised machine learning (ML) algorithms, Bayesian Networks, Decision Trees and Multilayer Perceptrons for the flow-based classification of six different types of Internet traffic including peer-to-peer (P2P) and content delivery (Akamai) traffic. The dependency of the traffic classification performance on the amount and composi...
Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
Space-bandwidth-efficient realizations of linear systems
KUTAY, MA; ERDEN, MF; OZAKTAS, HM; ARIKAN, O; GULERYUZ, O; Candan, Çağatay (The Optical Society, 1998-07-15)
One can obtain either exact realizations or useful approximations of linear systems or matrix-vector products that arise in many different applications by implementing them in the form of multistage or multichannel fractional Fourier-domain filters, resulting in space-bandwidth-efficient systems with acceptable decreases in accuracy. Varying the number and the configuration of filters enables one to trade off between accuracy and efficiency in a flexible manner. The proposed scheme constitutes a systematic ...
Delay aware reliable transport in wireless sensor networks
Gungor, Vehbi C.; Akan, Oezguer B. (Wiley, 2007-10-01)
Wireless sensor networks (WSN) are event-based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real-time delay b...
SWARM-based data delivery in Social Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (Elsevier BV, 2019-03-01)
Social Internet of Things (SIoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (QoS) ...
Citation Formats
D. G. Karpat and S. Bilgen, “Distributed restoration in optical networks using feed-forward neural networks,” PHOTONIC NETWORK COMMUNICATIONS, pp. 53–64, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51014.